Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
背景:低级别浆液性卵巢和腹膜癌 (LGSC) 是一种罕见疾病,关于其临床和基因组学状况的数据很少。方法:对 1996 年至 2019 年期间在 MITO 中心确诊为 LGSC 的患者进行了回顾性分析。评估了治疗后的客观缓解率 (ORR)、无进展生存期 (PFS) 和总生存期 (OS)。此外,使用下一代测序 (NGS) FoundationOne CDX (Foundation Medicine®) 评估了 56 例患者的肿瘤分子谱。结果:共确定 128 名具有完整临床资料且病理确诊为 LGSC 的患者。首次和后续治疗的 ORR 分别为 23.7% 和 33.7%。 PFS 为 43.9 个月(95% CI:32.4 – 53.1),OS 为 105.4 个月(95% CI:82.7 – 未达到)。最常见的基因变异是:KRAS(n = 12,21%)、CDKN2A/B(n = 11,20%)、NRAS(n = 8,14%)、FANCA(n = 8,14%)、NF1(n = 7,13%)和 BRAF(n = 6,11%)。意外的是,发现了致病性 BRCA1(n = 2,4%)、BRCA2(n = 1,2%)和 PALB2(n = 1,2%)突变。结论:MITO 22 表明 LGSC 是一种异质性疾病,其临床行为对标准疗法有反应,其分子改变也不同。未来的前瞻性研究应根据肿瘤的生物学和分子特征测试治疗方法。临床试验注册:本研究在 ClinicalTrials.gov 上注册号为 NCT02408536。
摘要 生命科学领域的最新技术进步极大地提高了我们以前所未有的深度在分子水平上解决科学问题的能力。自推出以来,下一代测序 (NGS) 实现了高通量分析,随着时间的推移,变得越来越普及和负担得起,塑造了研究和临床应用的未来。空间分辨转录组学 (SRT),特别是原位测序 (ISS),提供单细胞转录组数据,同时保留周围组织微环境的组织病理学背景。本论文探讨了挂锁探针与原位测序 (ISS) 或下一代测序 (NGS) 结合的应用,以解决与特定疾病相关的问题。在论文 I 中,我们研究了结核分枝杆菌 (Mtb) 与结核病感染小鼠肺中免疫细胞之间的空间相互作用,绘制了细菌簇和单个细菌附近的免疫相关转录本。我们的研究结果表明,在 Mtb 抗性的 C57BL/6 小鼠中,靠近单个细菌的巨噬细胞活化。相比之下,在易感染结核分枝杆菌的 C3HeB/FeJ 小鼠的肺组织中占主导地位的组织化肉芽肿未富集免疫激活转录本。这种方法提供了对结核病免疫反应的见解,并强调了空间分辨转录组学在研究宿主-病原体相互作用方面的能力。在论文 II 中,我们研究了非小细胞肺癌 (NSCLC) 中的肿瘤微环境,重点研究了 T 细胞克隆性的影响。我们将 TCR 克隆性与基因突变、肿瘤免疫特征和对免疫疗法的反应联系起来。我们的数据显示,高 TCR 克隆性与高肿瘤突变负担、发炎的肿瘤表型以及对检查点抑制剂的反应改善有关,这表明其有可能成为 NSCLC 个性化免疫治疗的生物标志物。在论文 III 中,我们在空间上探索了新辅助治疗期间选定的 NSCLC 组织中的 TCR 模式和免疫细胞分布,这些组织具有匹配的未受影响的淋巴结,以及 HER2+ 乳腺癌病例。我们注意到,与匹配的淋巴结相比,癌症组织中的 TCR 多样性较低。我们的数据进一步揭示了扩增克隆型(主要是 CD8 T 细胞)的区域优势,这些克隆型位于靠近癌症区。总体而言,这些结果证明了 ISS 在提供诊断组织样本中肿瘤免疫微环境中克隆 T 细胞扩增之间相互作用的关键空间细节方面的实用性,特别是在治疗环境中。在论文 IV 中,我们开发了一种基于分子倒置探针 (MIP) 的经济高效的检测血液样本中微生物病原体和抗菌素耐药性标志物的检测方法,即使在资源匮乏的环境中也能提供高特异性和灵敏度。MIP 方法简化了病原体检测,无需进行大量的样品制备或生物信息学分析,使其成为资源匮乏地区监测传染病的便捷工具。总的来说,这项工作展示了挂锁探针和先进技术的应用,以加深我们对疾病的了解并改善诊断和个性化治疗。
根据第31条规定,授权直接授予。 50,第 1 段,信函。 b) 根据第 36/2023 号立法法令,向 Croce Bianca Italiana Srl 提供救护车服务,配备医生,在 2025 年 1 月 14 日(竞争 7 名具有 IT 背景的助手)和 2025 年 1 月 31 日(竞争 3 名具有 IT 背景的专家)的竞争程序中,金额为 2,600.00 欧元(免征增值税),计入支出项目编号。 2025财政年度预算预测第10337号(“人员选拔支出”);
序言 “历史建筑和历史遗迹提高了人们的生活质量,有助于营造一种我们都认同的地方感。作为一个社区和地方当局,我们有责任为子孙后代保护我们的历史资产,并确保它们不会因无情的改建或劣质开发而受到损害。保护区的指定和后续管理是实现这一目标的一种方式。保护区的目的不是阻止进步或阻止变革。相反,它们为当地社区和自治市议会提供了积极管理变革的手段,并保护该地区的特色免遭破坏或完全消失。斯韦尔自治市很幸运,拥有如此丰富多样的建筑和自然遗产。自治市议会希望看到它被积极地用作可持续、敏感的再生和发展的催化剂,并创造人们愿意生活、工作和充分利用闲暇时间的地方。为此,我们审查了 Cellar Hill 和 Greenstreet 保护区,审查结果已在本文件中列出,自治市议会目前正在寻求建设性反馈。这是自治市议会在通过 2020 - 2032 年 Swale 遗产战略后承诺进行的一系列保护区审查之一。”
本文讨论了超维计算(HDC)(又称向量符号架构(VSA))中全息特征向量的分解。HDC 使用具有类似大脑特性的高维向量来表示符号信息,并利用高效的运算符以认知方式构建和操作复杂结构化数据。现有模型在分解这些结构时面临挑战,而分解过程对于理解和解释复合超向量至关重要。我们通过提出 HDC 记忆分解问题来应对这一挑战,该问题捕捉了 HDC 模型中常见的构造模式。为了有效地解决这个问题,我们引入了超维量子记忆分解算法 HDQMF。HDQMF 的方法独特,利用量子计算提供高效的解决方案。它修改了 Grover 算法中的关键步骤来实现超向量分解,从而实现了二次加速。
当前的社会和环境问题 - 社会问题:很多场景是孩子和妇女在街上争相等待游客前来出售他们的手工制品,有时他们不得不站在恶劣的天气中跟随游客,这给刚到的外国游客带来不适和困惑。 - 环境问题:工厂向环境中排放过多的废物,存在许多可能导致工人健康的问题。
该项目处理加州大学圣地亚哥分校 Julian McAuley 提供的亚马逊数据集。该项目旨在使用潜在狄利克雷分配 (LDA) 提取亚马逊文本评论中讨论的特征。此外,一旦提取出特征,就会构建一个推荐器。为了实现这一点,该项目提出了各种模型,如主题聚类推荐、无约束矩阵分解和基于内容的过滤。首先,清理数据集并进行数据探索以观察数据中的各种趋势。根据评论的评分,创建词云以确定数据集中每个单词的重要性。在初步数据探索之后,使用潜在狄利克雷分配 (LDA) 提取数据集中讨论的主题。[8,10] 最后,使用这些主题,在主题聚类推荐、无约束矩阵分解和基于内容的过滤等不同模型的帮助下构建推荐器。根据召回率和平均绝对误差等指标,将选择最佳模型。关键词:亚马逊,推荐器,LDA,主题建模,基于内容的过滤,矩阵分解 1.简介 互联网是重要的信息来源。过去几年,电子商务领域取得了长足的发展。几乎所有我们需要的东西都可以在网上轻松获得。亚马逊、eBay 和 Flipkart 等网站在电子商务中发挥着至关重要的作用。亚洲、非洲/中东和拉丁美洲地区超过 60% 的人口愿意在线购物 [7]。据观察,2017 年第一季度,电子商务销售额达到 1057 亿美元 [10]。如果大多数人依赖电子商务网站购物,那么概述网站上发布的有关产品的评论就很重要。其他各种客户都会阅读有关在线发布的任何产品的评论。根据现有的评论和可用的评论数量,客户往往会决定是否购买该产品。网站上任何产品的评论对于决定网站或产品的成功都起着非常重要的作用。
