本文讨论了超维计算(HDC)(又称向量符号架构(VSA))中全息特征向量的分解。HDC 使用具有类似大脑特性的高维向量来表示符号信息,并利用高效的运算符以认知方式构建和操作复杂结构化数据。现有模型在分解这些结构时面临挑战,而分解过程对于理解和解释复合超向量至关重要。我们通过提出 HDC 记忆分解问题来应对这一挑战,该问题捕捉了 HDC 模型中常见的构造模式。为了有效地解决这个问题,我们引入了超维量子记忆分解算法 HDQMF。HDQMF 的方法独特,利用量子计算提供高效的解决方案。它修改了 Grover 算法中的关键步骤来实现超向量分解,从而实现了二次加速。
主要关键词