摘要:恶意软件是当今互联网用户面临的最重要问题之一。多态恶意软件是一种新型恶意软件,比前几代病毒更具适应性。多态恶意软件不断修改其签名特征,以避免被传统的基于签名的恶意软件检测模型识别。为了识别恶意威胁或恶意软件,我们使用了许多机器学习技术。高检测率表明选择了准确率最高的算法用于系统。作为一种优势,混淆矩阵测量了误报和漏报的数量,这提供了有关系统运行情况的附加信息。特别是,事实证明,使用恶意软件分析和检测的结果以及机器学习算法来计算相关对称性(Naive Byes、SVM、J48、RF 和所提出的方法)积分的差异,可以检测计算机系统上的有害流量,从而提高计算机网络的安全性。结果表明,与其他分类器相比,DT(99%)、CNN(98.76%)和 SVM(96.41%)在检测准确率方面表现良好。比较了给定数据集中 DT、CNN 和 SVM 算法在小 FPR(DT = 2.01%、CNN = 3.97% 和 SVM = 4.63%)上检测恶意软件的性能。这些结果意义重大,因为恶意软件变得越来越普遍和复杂。
主要关键词