经典和学习查询优化器 (LQO) 使用基数估计作为查询规划的关键输入之一。因此,准确预测任意查询的基数在查询优化中起着至关重要的作用。最近新型深度学习方法的蓬勃发展不仅刺激了 LQO 的兴起,也促成了学习基数估计器 (LCE) 的出现。然而,它们中的大多数都是基于经典神经网络的,忽略了不同表之间的属性之间的多元相关性可以通过量子电路中的纠缠自然表示。在本文中,我们介绍了 QardEst - 量子基数估计器 - 一种用于估计连接查询基数的新型量子神经网络方法。我们使用相似数量的可训练参数进行的实验表明,在量子模拟器上执行的量子神经网络在均方误差和 q 误差方面均优于经典神经网络。
主要关键词