摘要。由于量子力学在物理教育研究中取得了令人鼓舞的成果,通过双态系统进行量子力学的教学/学习正在中学不断普及。一种可能性是使用光子的偏振态。本文报告了物理教师教育中基于偏振的量子力学介绍。一种广泛使用的学校材料为教师培训生的未来工作做好准备,同时也提高了他们的概念知识。这部分包括仅使用中学数学的统计计算和仅使用实数的不确定关系的新公式。第二步是使用实二维向量和矩阵准备量子力学的形式。考虑到学生可能不会学习复杂的线性代数,我们提供了一种通过圆偏振介绍双态系统完整形式的新方法,提供了对复杂量子态的逐步探索。这指出了通过物理示例使用复杂线性代数的优势,提供了接触高级量子物理和量子计算元素的机会,同时深化了中学材料的物理背景。
Chang等。 8读数为14.5±2。 为简单起见,我们将这些解决方案称为“ pH 14解决方案”。Chang等。8读数为14.5±2。为简单起见,我们将这些解决方案称为“ pH 14解决方案”。
在过去的几十年里,人们对利用不同密度泛函研究量子力学系统的兴趣日益浓厚。信息论 [1] 提供的强大工具的使用受到了特别的关注,该工具旨在根据系统的代表性或特征概率分布对系统进行精确描述。这些工具的应用范围广泛,包括复杂程度各异的物理和化学对象,从少粒子系统 [2] 到结构复杂的分子 [3,4],再到多电子原子和离子 [5,6]。此外,对于给定系统,我们通常可以根据所追求的精度水平以及所考虑的变量来考虑不同的描述模型。在时间独立的量子力学框架中,对给定状态下的单粒子或多粒子系统的完整描述,需要了解相应的波函数 (r 1 , . . . , rn ),它是特征值方程的相应解
摘要:表现出拓扑迪拉克费米的磁性材料引起了极大的关注。在这些系统中,自旋 - 轨道耦合和磁性的综合效应可以实现具有异国情调传输特性的新型拓扑相,包括异常的霍尔效应和磁性 - 手工学现象。在此,我们报告了TaCote 2中拓扑迪拉克抗铁磁性的实验签名,这是通过角度分辨的光学光谱和第一原理密度函数理论计算的实验签名。特别是,我们发现在费米水平上存在自旋 - 轨道耦合诱导的间隙,这与大型内在非线性霍尔电导率的表现一致。值得注意的是,我们发现后者对NE vector的方向极为敏感,这表明Tacote 2是实现具有前所未有的内在可调性水平的非挥发性自旋装置的合适候选者。关键字:非线性霍尔效应,狄拉克防fiferromagnet,拓扑,旋转 - 轨道耦合,arpes
本文研究使用物理信息神经网络 (PINN) 计算时间相关的狄拉克方程,PINN 是科学机器学习中一个强大的新工具,它避免了使用微分算子的近似导数。PINN 以参数化(深度)神经网络的形式搜索解,其导数(时间和空间)由自动微分实现。计算成本的增加源于需要使用随机梯度法求解高维优化问题,并在训练网络中使用大量类似于标准偏微分方程求解器离散化点的点。具体而言,我们推导了一种基于 PINN 的算法,并展示了其应用于不同物理框架下的狄拉克方程时的一些关键基本性质。
为了阐明 SiNRs/Ag(110) 中 1D 狄拉克带的起源,我们将 SiNRs/Ag(110) 的展开能带结构投影到不同的原子层,如图 S4(a)-S4(d) 所示。可以看出,狄拉克带主要位于表面 Si 层,在最顶层的 Ag 层只有少量的剩余信号。最顶层 Ag 层中的剩余信号表示 Si 和 Ag 之间的有限能带杂化。第 8 个 Ag 层仅包含 Ag(110) 的体能带,如图 S4(c) 所示。通过比较图 S4(a) 和 S4(c),我们还可以得出结论,狄拉克带附近强度较高的能带来自 Ag(110) 的体能带。事实上,由于我们计算中的平板几何形状,这些能带来自 Ag 体 sp2 能带的子能带。为了研究狄拉克能带的轨道组成,我们将展开的能带结构投影到 Si s 和 Si ad 原子的不同轨道上,如图 S4(e)-S4(l) 所示,发现狄拉克能带主要由 Si spz 轨道组成。这些结果与我们的 TB 分析结果一致,即 Si s 和 Si ad 原子的 pz 轨道是解耦的。
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。