Sierra空间为太空和导弹系统中心的高级系统和开发局(SMC/AD)提供了DOD太空测试计划(STP)太空测试计划卫星-5(STPSAT-5)的SN-50航天器。STPSAT-5被设计为狮子座的乘车系统,并携带了五个政府提供的(GP)有效载荷。Sierra Space是STPSAT-5卫星的主要承包商,该卫星基于SN-50模块化,可重构的ESPA级航天器总线。Sierra Space设计和建造了航天器总线,集成了GP有效载荷,并在我们的CO设施的路易斯维尔进行了完整的太空测试和启动/操作支持。航天器设计升级,因为STPSAT-5包括处理和推进功能的大量改进。我们的新高速处理器在有效载荷数据吞吐量方面提供了重大进步。
这些公司已经开始探索创新的想法,目的是为有效载荷和载人航班提供商业访问权限。第一批航班是尺寸的,被称为“太空旅游”航班,但是公司的主要目标是狮子座,通过将Cubesats和Nanosats推入轨道,因为它们的小尺寸允许大量用户进行太空实验。在这种情况下,主要挑战是确保任务可行。一个例子是公司Space X,该公司在NASA计划中提供了亚轨道服务,并在ISS上停靠了其Falcon 9 Rocket和Dragon Capsule。此外,诸如波音公司和新的初创公司(例如轨道科学公司)及其Cygnus船上的新兴公司和新兴公司与Dreamchaser和Sierra Nevada Corporation一起,也决定承担竞争风险并进入弗雷(Fray)。
∗作者在法国图卢兹Laas CNRS获得了机器人和人工智能的博士学位。他是一名研究人员的研究人员,对车轮探索机器人进行了任务计划和执行,并领导了R&D团队的资源优化,以优化卫星的狮子座星座,小型类人机器人的角色动画,室内式无人机的自主导航以及在物流环境中AMR的企业范围内的任务计划以及AMR的导航。他曾担任过运营角色,例如创建和管理领域的工程师,以部署AMRS和一组运营商来远程监督它们。作者现在是L3/L4高速公路自动化车辆的技术领导者。本出版物中表达的意见是作者的意见。他们不愿意反映其现任/前任雇主的观点或观点。
测量合作伙伴与太阳拖船促进狮子座卫星服务2025年2月6日 - Measat Global Berhad(“ Meatat”) - 马来西亚的主要卫星解决方案提供商已与上海太空技术公司签署了一份理解备忘录(“ MOU”)备忘录。媒体旨在促进两家公司之间的潜在合作,包括提供Spacesail的低地球轨道(LEO”)宽带服务和解决方案,其千帆的大型帆(也称为“ Qianfan”)(也称为“ Qianfan”),包括直接到decto的新兴技术(“ d2d”),基于卫星,仪式和基于卫星的互联网和互联网,服务;在马来西亚和亚洲的市场中,有衡量标准,此外还有关于Q/V波段高频传输的联合降雨研究。阅读更多Eutelsat和TélécomsSansantières:对紧急连通性和数字包含的新承诺
NASA目前正在研究在低地球轨道(LEO)中存储低温流体的潜力。具有容易用于高性能推进系统的低温推进剂在不久的将来对深空任务非常有益。在狮子座中储存低温流体的关键挑战之一就是最大程度地减少煮沸。为了应对挑战,NASA正在评估热绝缘层中的新概念。最近的一项实验研究评估了使用氧化Yttrium(Y 2 O 3)的可行性,形成成瓷砖或喷雾涂层,这些涂层可能可能用作深空中低温推进剂储存应用的热涂层。由于其温度和波长依赖于光学特性,这种“太阳白”材料可以反映出太阳的绝大部分辐射能,同时具有很高的红外发射率,以拒绝热量到深空。
要发挥许多科学和技术领域的全部潜力(例如地球气候监测和保护,防御和安全以及太阳系探索)需要尽可能多地使用高分辨率的图像,结合高分辨率图像和高恢复率。但是,目前以合理的成本结合了高空间和时间分辨率。的确,只能通过在狮子座(低地球轨道)星座中使用多个卫星同时实现这两个要求,这需要较小的单个卫星才能降低成本。但是,使用小平台(例如立方体,一种微型标准卫星)限制了光孔的大小,从而限制了空间分辨率。例如,由于衍射极限,直径10厘米的望远镜(Cubesat上的典型最大孔径)仅提供来自500 km轨道(500 nm)的500 km轨道的分辨率图像。在立方体上开发大于10 cm的光圈代表了主要的光学机械挑战。
摘要 - 提出了通过闭环机器学习的低地球轨道(LEO)卫星轨道预测的框架。通过改进地面车辆的导航,与使用简化的一般扰动4(SGP4)Orbit Orbit Expagator相比,使用“非合作” LEO卫星信号来证明该框架的功效,并通过“非合作” LEO卫星信号导航。该框架称为LEO-NNPON(具有机会性导航的NN预测),假定以下三个阶段。(i)LEO卫星第一通过(跟踪):具有其位置提取物测量值的陆地接收器(伪造,载波相位和/或多普勒)从接收到的Leo卫星的信号中,使其能够估算到达的时间。LEO卫星的状态用SGP4传播的两行元素(TLE)数据初始化,随后在卫星可见性期间通过扩展的Kalman滤波器(EKF)估算。(ii)未观察的LEO卫星(预测):在估计的ephemerides上对具有外源输入(NARX)NN的非线性自回归进行了训练,并用于传播Leo卫星的轨道,以期在此期间不观察卫星。(iii)LEO卫星第二通道(导航):配备LEO接收器的地面导航器(例如,车辆),从Leo卫星的下链路信号中提取导航可观察到可观察到的可观察到的可观察到的可观察到的导航器。这些导航可观察物用于以紧密耦合的方式(例如,通过EKF)以紧密耦合的方式帮助导航器安装的惯性测量单元(IMU)。LEO卫星状态是从NN预测的胚层获得的。提出了装有工业级IMU导航4.05 km的地面车辆的实验结果,并提供了来自两个Orbcomm卫星的信号。比较了三个车辆导航框架,所有车辆导航框架都用全球导航卫星系统(GNSS) - 惯性导航系统(INS)位置和速度解决方案进行初始化。 (ii)使用SGP4传播的Leo Esphemerides的Leo-Aided Ins; (iii)与狮子座的狮子座。独立的三维(3-D)位置根平方(RMSE)为1,865 m,而SGP4的Leo Aided INS为175.5 m。 Leo-Nnpon的Leo Aided Ins为18.3 m,证明了拟议框架的功效。
我们的分析表明,对LEO人类太空飞行的运营存在明显的未开发需求,但是目前,这种需求受到过时的行业对可能的影响的抑制。行业广泛认为商业狮子座的运营并不考虑,因为认为此类运营非常昂贵,或者不太可能在理想的时间范围内实现投资回报率。鉴于我们的大型专业网络,该网络占了财富500强公司的85%,并且在创业社区中包含了广泛的占地面积,德勤意识到,Leo商业市场“太难了”,“太昂贵”,“太昂贵”,“太冒险”,“太冒险”,或者是“太昂贵”。多亏了我们作为领先的商业公司175年的经验,我们也了解了一个事实,即感知并不总是现实,并且克服不受支持的看法的最佳方法是详尽的商业案例分析。
狮子座(Leo)是一名22岁男子,在17岁时接受了1型糖尿病的诊断,他一直在努力实现葡萄糖靶标。作为一个年轻的成年人,他有许多竞争优先级,糖尿病并不是首先。他在餐厅厨房里工作,没有私人保险。他一直在接受多种日常注射(MDI)胰岛素疗法,作为基础胰岛素,但常常会忘记指尖的葡萄糖调查和进餐时间。狮子座经常有一个没有胰岛素的晚餐小吃,因为他担心夜间低血糖症。在过去的两年中,他的糖化血红蛋白水平从9.0%到13.2%,使他患有长期并发症的高风险。他的糖尿病团队开了一个葡萄糖剂,也称为连续葡萄糖监测仪(CGM),该葡萄糖监测器(CGM)每5分钟提供每5分钟的间质葡萄糖值,但是拒绝了批准,因为他每天没有至少执行四个指尖葡萄糖仪测量。由于错过的胰岛素注射和高糖化的血红蛋白水平,还拒绝了用于渗透输液泵的批准。当LEO参加了一项研究测试自动胰岛素输送(AID)系统的研究时,他的糖化血红蛋白水平为11.2%。最初,他既有胶质传感器和胰岛素泵,但是根据研究方案,胰岛素熟练尚未自动化。他的糖化血红蛋白水平在2周内降至8.5%。这种惊人的改进归因于几个因素。首先,葡萄糖传感器每5分钟测量葡萄糖水平,立即提供反馈和警报。1)。通过与他的伴侣分享这些实时阅读和警报,Leo和他的伴侣都对较低的葡萄糖价值(尤其是一夜之间)变得更加满意。第二,胰岛素剂量更容易递送,因为泵计算出的餐和纠正剂量并消除了对手动注射的需求。最后,全天候戴泵确保了基底胰岛素存在,并且不会受到未经手动注射的影响。6个月后,如协议中的规定,LEO转变为使用援助系统(图他很快学会了信任该系统,他对夜间低血糖症的焦虑消失了。使用辅助系统3个月后,他的糖化血红蛋白水平为6.9%(图2a)。
基于RF-squids的Josephson行动波参数放大器的实验表征利用共振相位匹配方案 / Fasolo,L。;阿伦斯(Ahrens),f。; Avallone,G。;男爵,c。 Borghesi,M。; Callegaro,L。; Carapella,G。;加载,A。P。; Carusotto,i。 Cian,A。; D'Elia,A。; Gioacchino,D。 Falferi,p。; Faverzani,M。; Ferri,E。; Filatrella,G。;猫,c。 Giubertoni,d。; Granata,V。; Guarcello,c。 Labranca,d。;狮子座,a。; Ligi,c。; Livreri,P。; Maccarrone,G。; Mantegazzini,f。; Margesin,b。 Maruccio,G。; Mezzena,r。 Montediro,A。G。; Moretti,R。 nucciotti,a。; Oberto,L。; Origo,L。; Pagano,s。; Piedjou,A。S。; Piersanti,L。; Rettaroli,A。; Rizzato,S。; Tocci,s。; Vante,A。; Zannoni,M。; Giachero,A。; Enrico和..- in:IEEE超导性的IEEE交易。- ISSN 1051-8223。-34:3(2024),p。 1101406。[10.1109/tasc。 2024.3359163]