体外生长抑制测定法用于检测恶性疟原虫菌株之间的抗原差异。猫头鹰猴的免疫。营养不良的猴子血清用于抑制八种恶性疟原虫菌株的体外生长。抑制是同源营地菌株的最大抑制作用(平均抑制100 mL/升cAMP-免疫血清)。其他四种菌株被较小程度抑制,三种菌株(FCR-3/FMG,FVO和Smith)在浓度高达400英里/升时并未受到cAMP免疫血清的显着抑制。fcr-3/fmg-rimmune血清,浓度为50 ml!升引起对FCR-3/FMG菌株的显着抑制,而不是cAMP菌株。因此,CAMP和FCR-3/FMG菌株似乎具有不同的抗原决定因素,而这些决定因素是同源性的,但不具有异源,抗血清的。通过免疫血清抑制体外生长可能对肺炎疟原虫的血清分型很有用,并且可能在选择菌株中应用于纳入疟疾疫苗。
B7-H3,也称为CD276,是B7免疫调节蛋白家族的成员。B7-H3在许多固体癌症上过表达,包括前列腺癌,肾细胞癌,黑色素瘤,头颈部鳞状细胞癌,非小细胞肺癌和乳腺癌。B7-H3的过表达与疾病的严重程度,复发风险和生存率降低有关。 在本文中,我们报告了MGC018的临床前开发,这是一种针对B7-H3的抗体 - 药物结合物。 MGC018由可切合的连接器 - 杜卡林有效载荷,Valine-Citrulline- seco duocarmycin hydroxybenzamide azaindole(vc- seco-duba)组成药物与抗体比为〜2.7。 MGC018对B7-H3阳性人肿瘤细胞系表现出细胞毒性,当与B7-H3阳性肿瘤细胞共培养时,旁观者杀死靶阴性肿瘤细胞。 MGC018在乳腺癌,卵巢癌和肺癌以及黑色素瘤的临床前肿瘤模型中显示出有效的抗肿瘤活性。 此外,观察到抗肿瘤活性朝着患者衍生的异种移植物模型,前列腺,头颈癌显示出B7-H3的异质表达。 重要的是,MGC018反复给药后,MGC018在cynomolgus猴子中表现出良好的药代动力学和安全性。B7-H3的过表达与疾病的严重程度,复发风险和生存率降低有关。在本文中,我们报告了MGC018的临床前开发,这是一种针对B7-H3的抗体 - 药物结合物。MGC018由可切合的连接器 - 杜卡林有效载荷,Valine-Citrulline- seco duocarmycin hydroxybenzamide azaindole(vc- seco-duba)组成药物与抗体比为〜2.7。MGC018对B7-H3阳性人肿瘤细胞系表现出细胞毒性,当与B7-H3阳性肿瘤细胞共培养时,旁观者杀死靶阴性肿瘤细胞。MGC018在乳腺癌,卵巢癌和肺癌以及黑色素瘤的临床前肿瘤模型中显示出有效的抗肿瘤活性。此外,观察到抗肿瘤活性朝着患者衍生的异种移植物模型,前列腺,头颈癌显示出B7-H3的异质表达。重要的是,MGC018反复给药后,MGC018在cynomolgus猴子中表现出良好的药代动力学和安全性。用MGC018观察到的抗肿瘤活性以及正面安全性提供了潜在有利的治疗指数的证据,并支持MGC018的持续开发用于治疗固体癌症。
摘要 - 具有光学动力和数据遥测的基于最小的和无线近红外(NIR)的神经记录器是一种有希望的长期监测的有前途的方法,该方法具有最小的现状独立唱片仪之间的最小物理维度。但是,基于NIR的神经记录综合电路(IC)的主要挑战是在存在光引起的寄生寄生短路电流的情况下保持强大的操作。当信号电流保持较小以降低功耗时,尤其如此。在这项工作中,我们为电动机预测提供了一个容忍和低功率的神经记录IC,该记录可以在低调的300 µw/mm 2中充分发挥作用。,它以4.1噪声效率因子(NEF)伪抗抑制作用的放大器,芯片神经特征提取器和单个的Mote-Mote级增益控制,在38℃时达到了0.57 µW的最佳能力消耗。应用猴子的20通道预录的神经信号,IC可以预测用
Monkeypox(MPOX)是由MPOX病毒(MPXV)引起的一种被忽视的人畜共患感染疾病。该病毒属于正托病毒属,由双链的197-kb脱氧核酸(DNA)基因组组成。Monkeypox病毒于1958年首次从Macaca fassicularis分离出来,该病毒起源于新加坡,进口到哥本哈根,该哥本哈根随后引起了圈养的cynomolgus猴子的爆发[1]。到1970年,该病毒被证明能够人畜共患病到Humans,但仍包含在非洲,引起了孤立的感染EP-肾素。直到2003年,与非洲小型哺乳动物的进口有关的爆发出现在美国[2]。2017年,在几十年未识别案件之后,西非最大的MPOX爆发发生在尼日利亚[3]。从2018年到2021年,从尼日利亚进口了几起案件,向英国,以色列和新加坡等非流行国家进口[4-7]。2022年5月,迅速
多巴胺能神经元细胞死亡,与细胞内-突触核蛋白( -syn) - 富含蛋白质聚集体[称为“ Lewy Bodies”(LBS)],是帕金森氏病(PD)的良好特征。从多个实验模型中获得的许多证据表明, -syn在PD发病机理中发挥了作用,不仅是病理学的触发因素,而且是通过病理扩散的疾病进展的介体。在这里,我们使用了一种基于机器学习的方法来识别由来自PD患者衍生的不同 -Syn致病结构引起的猴子中神经退行性的独特特征。出乎意料的是,我们的结果表明,在非人类灵长类动物中,少量的奇异 - syn聚集体与LBS中存在的较大的淀粉样蛋白原纤维一样有毒,从而增强了该物种中临床前研究的需求。此外,我们的结果提供了支持PD的真实多因素性质的证据,因为多种原因可以引起多巴胺能神经变性的类似结果。
图1:来自神经回路中细胞外记录的细胞类型识别策略。该策略包括三个步骤:数据采集和策展,以构建地面真相类型库,从地面真相库中选择以训练基于机器学习的分类器的特征,以及使用其他数据集对分类器进行测试,包括其他物种。第一步是基于在清醒小鼠的电生理记录期间基于遗传学定义的神经元的光遗传学激活来创建一个基础真相库。通过突触阻滞剂药理学和电生理标准的结合,必须直接激活地面真相文库中的神经元,然后进行仔细的数据策划。第二步是识别数据集中的功能,这些功能可用于训练半监督的深度学习分类器。第三步是通过要求将其预测小鼠和猴子专家分类记录的独立数据集中的单元格类型来测试分类器的一般性。117
美国专利局如何跟上人工智能的步伐 VentureBeat Seth Colaner 2020 年 10 月 29 日 [链接] 技术不断给知识产权法带来挑战。臭名昭著的“猴子自拍”案不仅挑战了谁拥有一项知识产权的概念,而且挑战了什么首先构成了“谁”。上个十年的半感知猴子正在让位于一个新的“谁”:人工智能。人工智能的迅速崛起迫使法律界提出一些难题:人工智能是否可以拥有专利,现有的知识产权和专利法如何应对人工智能带来的独特挑战,以及还存在哪些挑战。这些问题的答案并不简单;学术界、政府和工业界的利益相关者已经投入了数十亿美元用于研究和开发人工智能技术以及人工智能产品和服务。专利所有权代表了谁掌握着人工智能的金钱和权力。例如,专利持有人是参与项目的员工,还是雇用该员工的公司,或者是人工智能本身,都会产生巨大的影响。此外,在获得专利时,很难在人工智能的透明度和可审计性与泄露商业机密的风险之间取得平衡。这些新挑战出现在人工智能相关专利申请持续飙升的时期。根据美国专利商标局 (USPTO) 的一份新报告《发明人工智能:用美国专利追踪人工智能的传播》,2002 年至 2018 年,每年的人工智能专利申请增加了 100%,从 30,000 份增加到 60,000 份。在同一时期,以某种方式包含人工智能的申请比例从 9% 增长到近 16%。该报告没有分享过去两年的数据,但考虑到我们目前正处于人工智能的炎热夏天,这些数字很可能只会增加。现行法律在处理 AI 专利方面是否成功?美国专利商标局正在积极努力就如何处理 AI 问题达成明确共识。2019 年,该机构提出了两份征求意见书 (RFC):一份是关于 AI 和专利法,另一份是关于 AI 对知识产权 (IP) 政策的影响。上述两份 RFC 分别有近 100 名受访者,他们来自法律、贸易团体、学术界等各个领域。在最近的一份报告中,该机构总结了收到的回复。受访者大体上达成了一致,在以下几个方面达成了一些普遍共识:
深神经网络(DNN)的几何描述有可能发现神经科学中计算模型的核心代表原理。在这里,我们通过量化其自然图像表示的潜在维度来检查视觉皮层的DNN模型的几何形状。流行的观点认为,最佳DNNS将其表示形式压缩到低维子空间以实现不变性和鲁棒性,这表明更好的视觉皮层模型应具有较低的维几何形状。令人惊讶的是,我们发现相反方向的强烈趋势 - 具有高维图像子空间的神经网络在预测猴子电生理学和人类FMRI数据中对持有刺激的皮质反应时倾向于具有更好的概括性能。此外,我们发现,在学习新的刺激类别时,高维度与更好的性能相关,这表明更高的维度表示更适合于概括其训练领域。这些发现提出了一个一般原则,高维几何形状赋予了视觉皮层DNN模型的计算益处。
摘要在其基因组的结构,复制模式以及水平转移遗传序列的能力的结构中,病毒,细菌和真核细胞之间存在主要差异。DNA测序研究对从慢性疲劳综合征(CFS)患者培养的病毒(CFS)培养的病毒研究已证实,作为感染过程的一部分,某些病毒捕获和转移真核细胞之间的细菌和细胞遗传序列的能力不足。该病毒起源于非洲绿色猴子Simian巨细胞病毒(SCMV)。它被称为隐形适应病毒,因为感染不伴有炎症。免疫逃避归因于编码通常由细胞免疫系统靶向的相对较少成分的基因的丢失和突变。本文提供了对病毒中许多细菌衍生的遗传序列的起源的进一步阐明。有多个具有近距离序列的序列比对的克隆,具有不同的基因组区域的ochrobactrum Quorumnocens A44种细菌的基因组区域。另一组克隆与支原体发酵疫菌的不同基因组区域最紧密匹配。其他几个克隆的序列只能与不同类型细菌的序列近对齐。克隆3B513的序列与几种类型细菌的基因组的遗传贡献一致。术语viteria是指具有细菌衍生的遗传序列的病毒。它们可能是CFS和自闭症的主要原因,并且在包括艾滋病在内的许多疾病中充当主要辅助因子。作为具有不同类型的叛变细菌序列的更普遍的现象,可能导致诊断出细菌疾病而不是病毒疾病的诊断。重要的是要从遗传上对患有广泛疾病的患者进行额外的隐身适应病毒,包括目前归因于分枝杆菌,伯氏菌或链球菌感染的病毒。引言对源自慢性疲劳综合征患者(CFS)患者的病毒培养物的克隆DNA的分子分析表明,培养的病毒起源于非洲绿色猴子Simian simian cintomegalovirus(SCMV)[1-4]。然而,在任何测序的DNA克隆中均未检测到与SCMV基因组主要区域相对应的遗传序列[4-5]。此外,针对其余已识别的SCMV区域的克隆分布不均匀,在克隆中具有与SCMV基因组同一区域相匹配的遗传变异性。这些发现与免疫逃生机制一致,被称为隐形适应,从删除或
摘要 规划和执行运动行为需要大脑多个皮层和皮层下区域协调神经活动。高伽马波段振幅与低频振荡(θ、α、β)相位之间的相位 - 振幅耦合已被提出来反映神经通信,低伽马振荡的同步也是如此。然而,低伽马波段和高伽马波段之间的耦合尚未得到研究。在这里,我们测量了执行伸手任务的猴子和执行手指屈曲或读词任务的人类的低伽马和高伽马之间的相位 - 振幅耦合。我们发现在所有任务期间,两个物种的多个感觉运动和运动前皮层中都存在低伽马相位和高伽马振幅之间的显著耦合。这种耦合随着运动的开始而变化。这些发现表明,低伽马波段和高伽马波段之间的相互作用是与运动和言语生成相关的网络动态的标志。