自主运动由初级运动皮层 (M1) 驱动,个体可以学会随意调节单个神经元。然而,M1 也接收明显的感官输入并有助于感官驱动的运动反应。这些非意志信号在多大程度上限制了 M1 的自主调节?使用一个任务,其中单个神经元的发放率直接决定计算机光标沿视轴的位置,我们 5 评估了猴子在不同感官环境下调节单个神经元的能力。我们发现感官环境持续影响 M1 中单个神经元的意志控制。例如,视觉旋转生物反馈轴可能会使相同的神经任务变得轻松或困难。值得注意的是,几天内或几天之间的延长训练并不能解决这种差异。我们的研究结果表明,感官环境可以限制 M1 活动受意志控制的程度。10
神经记录技术的最新发展使得记录大脑中数百个单个神经元成为可能。这是一项重大进步,它允许使用脑信号来控制具有很大自由度的假肢。它还使研究人员能够研究神经元群体用来表示和处理大脑信息的神经代码。在这个项目中,我们将分析从清醒、行为正常的猴子额叶皮层记录的数据,以了解不同区域的神经元群体在工作记忆任务中如何反应。我们将研究不同的神经代码(贝叶斯概率、信息论、部分定向相干性等),以了解信息是如何从一个区域处理和转换到另一个区域的。学生将学习如何处理大型神经数据集、将神经数据与动物行为关联起来、在 Matlab 中编程以及在高性能计算集群上执行大规模数据分析。
在孕妇中没有对eptifibatide进行临床研究。胎儿丧失和早产的发生率增加可能与母亲出血有关。在大鼠和兔子中的生殖研究没有提供生育能力,胚胎 - 毛状或周期/产后毒性,每天的Eptibibatide剂量高达72 mg/kg的大鼠和36 mg/kg的兔子(在兔子中(提供与等离子eptifibatide浓度相似的人类预期)的人类中,这两种物种中的人类均具有相似的含量);然而,在猴子的血浆中观察到组织和器官出血的浓度,这些浓度近似于在人类中以建议剂量获得的浓度。尽管没有并发的阿司匹林和肝素,但这些出血还是发生了。由于动物繁殖研究并不总是可以预测人类反应,因此只有在怀孕期间才能使用eptifibatide,而当对母亲的好处大于胎儿的潜在风险。
我们最近报告说,动物在压力下也会扼杀(11)。恒河猴执行了一项具有挑战性的任务,在这些任务中,他们必须执行一个既快速又准确的目标范围(图。1a)。,我们向动物提示了他们将获得成功触及的液体奖励的大小。任务中的表现受奖励规模的影响:中等潜力的奖励比对小奖励更有可能。这大概反映了执行这项具有挑战性的任务的动机。然而,当“大奖”(罕见和异常大)的奖励得到分会时,成功率下降,导致绩效与奖励之间的“反向U”关系,这表征了压力下的窒息(图1b)。在这里,我们利用了这样一个事实,即猴子在压力下cho缩在各个神经元的活性和神经活动控制行为的下秒时间尺度上探索现象的神经基础。
在2021年2月17日至6月18日之间,在26(26)加勒比公共卫生机构(CRPHA)成员国(CMS)中,现年18岁及以上的活跃社交媒体用户进行了一项横断面研究。尽管所有成员国都参加了调查,但只有六(6)个CMS达到了目标样本量,即巴巴多斯,库拉科,库拉科,圭亚那,牙买加,圣卢西亚,圣卢西亚,特立尼达和多巴哥。问卷是通过在线调查管理工具(调查猴子)管理的,并在Carpha Facebook页面和Carpha WhatsApp组上启动。还邀请成员国和合作伙伴在其Facebook和其他社交媒体平台上共享广告。该提案已提交给Carpha研究伦理委员会,以审查和批准涉及人类参与者的研究。于2021年1月29日获得道德批准。
电生理记录为神经科学领域做出了重大贡献,可以改善信号质量,侵入性和电缆使用。尽管无线记录可以满足这些要求,但传统的无线系统相对较重且笨重,可用于小鼠等小动物。这项研究开发了一个低成本的低成能(BLE)的无线神经元记录系统,体重<3.9 g,测量15×15×12 mm 3,具有易于组装,良好的多功能性和高信号质量的记录。小鼠的急性和慢性体内记录都证实了系统的无线记录能力,与有线记录相比,功率谱密度(PSD)和信噪比(SNR)的改善。由于其重量低和紧凑,基于BLE的无线神经元记录系统不仅可以用于小鼠,而且还可以用于其他动物(例如大鼠和猴子),从而扩大了电生理记录在神经科学中的应用。
神经活动通常是低维的,并且仅由少数几个突出的神经共变模式主导。有人假设这些共变模式可以形成用于快速灵活运动控制的基石。支持这一想法的是,最近的实验表明,猴子可以在几分钟内学会调整其运动皮层中的神经活动,前提是变化位于原始低维子空间(也称为神经流形)内。然而,这种流形内适应背后的神经机制仍然未知。在这里,我们在计算模型中表明,由学习到的反馈信号驱动的循环权重修改可以解释在流形内和流形外学习之间观察到的行为差异。我们的研究结果提供了一个新的视角,表明循环权重变化不一定会导致神经流形发生变化。相反,成功的学习自然会限制在一个共同的子空间中。
黄热病是一种急性黄热病毒感染,通过受感染的蚊子叮咬传播。该病发生在非洲和南美洲及中美洲(包括特立尼达)的部分热带和亚热带地区(参见国家旅游健康网络和中心 (NaTHNaC) 黄热病区网站上的地图,https://nathnacyfzone.org.uk/factsheet/60/yellow-fever-vaccine-recommendation-maps)。尽管存在媒介,但亚洲从未报告过本地感染病例。尽管该病在临床和病因上相同,但已确认三种黄热病流行病学模式——城市、草原和丛林。在城市黄热病中,病毒宿主是人,该病主要通过与人类生活和繁殖密切的埃及伊蚊在人与人之间传播。在非洲,存在一个中间(草原)循环,涉及病毒从蚊子传播给生活或工作在丛林边境地区的人类。在这个循环中,病毒可以通过蚊子从猴子传播给人,或从人传播给人类。丛林黄热病通过森林蚊子在非人类宿主(主要是猴子)之间传播。人类进入森林栖息地时可能会被感染,并可能成为城市疫情的源头。黄热病可能在长时间的平静期后再次爆发。农村人口感染黄热病的风险最大,但非洲确实发生过城市疫情。南美洲和中美洲的城市人口也面临风险,因为城市中心再次感染了埃及伊蚊,人口进出流行地区的情况也增加了。黄热病的严重程度从亚临床症状到非特异性、自限性发烧、不适、畏光和头痛症状,再到突然发烧、呕吐和虚脱,并可能发展为黄疸和出血。大约 15% 的黄热病病毒感染者会发展为中度至重度疾病。病死率差异很大,部分原因是轻症病例被漏诊,也可能反映了病毒株毒力的差异。一些研究估计西非黄疸患者的病死率为 20%(Monath 等人,2013 年)。在无免疫力的旅行者和移民中,以及在黄热病活动水平较低的地区流行期间,病死率可能超过 50%(Monath,2004 年)。潜伏期通常为三至六天
我们报告了通过体细胞核移植 (SCNT) 和胚胎碱基编辑克隆了一只 12 岁的转基因绿色荧光蛋白 (GFP) 猴,同时对腺嘌呤碱基编辑器 (ABE) 进行了安全性评估。我们首先展示了 ABEmax 通过在 293T 细胞中对 GFP 序列进行 A 到 G 编辑来沉默 GFP 的能力。随后,使用表达 GFP 的猴子的供体细胞,我们成功生成了 207 个 ABEmax 编辑 (SCNT-ABE) 和 87 个野生型 (SCNT) 胚胎,用于胚胎移植、基因分型以及基因组和转录组分析。使用一种名为 OA-SCNT 的新方法,对 SCNT-ABE 和 SCNT 胚胎进行比较以进行脱靶分析,而无需遗传变异的干扰。在编辑的猴胚胎中,ABEmax 不会诱导明显的脱靶 DNA 突变,但会诱导广泛的脱靶 RNA 突变,其中 35% 是外显子。研究结果为ABE的临床应用提供了重要参考。
摘要 本体感觉,即对身体位置、运动和相关力量的感觉,尽管在运动中起着至关重要的作用,但仍未得到充分理解。大多数对体感皮层本体感觉区域 2 的研究只是将神经元活动与手在空间中的运动进行比较。使用运动跟踪,我们试图通过描述 2 区活动与整个手臂运动的关系来阐述这种关系。我们发现,与经典模型不同,整个手臂模型成功地预测了猴子在两个工作空间中伸手触及目标时神经活动特征的变化。然而,当我们随后在主动和被动运动中评估这个整个手臂模型时,我们发现许多神经元在两种条件下都不能一致地代表整个手臂。这些结果表明 1) 2 区中的神经活动包括伸手过程中整个手臂的代表,2) 这些神经元中的许多在主动和被动运动期间以不同的方式代表肢体状态。