A3:我们正在通过独立的国家运营和当地供应商来探索成本优化机会,同时维持敏捷性。但是,我们认识到需要合理的区域常见数字营销工具和平台,以便在数字渠道上捕获商机。我们正在研究统一的数据采购基础并开发一个共同的平台,考虑到适当的核心系统与平台保持一致。也已经实施了区域RPA采购,创建了一个共享库,该图书馆允许实体采用小组其他地方开发的储蓄解决方案。
世界正在进行能源转型,以减少二氧化碳排放和减缓气候变化 [1]。正在进行的最重要的行动是加强可再生能源的作用、提高能源效率、实现运输和供暖部门的电气化以及能源储存 [2、3]。氢经济是一种重要的可持续替代方案,将有助于实现运输、供暖部门和能源储存的脱碳 [4]。新冠疫情和乌克兰战争进一步增加了欧洲和西方国家投资氢经济作为化石燃料替代品的兴趣 [5]。氢气显著降低了地缘政治风险,因为它极大地增加了未来能源供应商的多样性 [6]。氢气是一种特别有趣的天然气替代品,因为它也是一种灵活的电力来源,并且可以使用现有的天然气基础设施 [7]。氢气的体积能量密度低,液化后可实现长距离运输。氢气液化会消耗大量能源。现有的氢气液化厂每生产一千克氢气约需 13 千瓦时电力,这约占氢气储存能量的 30% [8]。氢气液化的理论最小能耗(1 bar 时 298 K e 20 K)为每千克氢气 3.7 千瓦时电力,相当于氢气储存能量的 9.3% [8]。正在开发的新工艺可以通过磁制冷将能耗降低到每千克氢气 6 千瓦时电力,效率达到卡诺循环的 50% [9]。用于氢气液化的磁制冷系统的一种可能配置是主动磁再生器 (AMR) 系统。在该系统中,磁性材料通常是一层填充的颗粒床,它们通过一系列磁场循环以提供冷却效果。 AMR 系统已被证明具有很高的冷却能力和效率,使其成为一种很有前途的 H 2 液化技术[10]。显著提高液化效率的另一个方面是规模效应。例如,氢气液化量从每天 100 吨增加到 1000 吨,可将液化成本从 2 美元/千克 H 2 降低到 1 美元/千克 H 2 [8]。液态空气已被提议用于不同目的的冷能回收[11]。例如,使用液态空气储能 (LAES) 来储存电能,即将热能储存在液态空气中,然后用于发电[12]。液态空气已被提议用于液化天然气 (LNG) 工艺的冷能回收,类似于本文提出的方案[13]。使用
世界正在进行能源转型,以减少二氧化碳排放和减缓气候变化 [1]。正在进行的最重要的行动是加强可再生能源的作用、提高能源效率、实现运输和供暖部门的电气化以及能源储存 [2、3]。氢经济是一种重要的可持续替代方案,将有助于实现运输、供暖部门和能源储存的脱碳 [4]。新冠疫情和乌克兰战争进一步增加了欧洲和西方国家投资氢经济作为化石燃料替代品的兴趣 [5]。氢气显著降低了地缘政治风险,因为它极大地增加了未来能源供应商的多样性 [6]。氢气是一种特别有趣的天然气替代品,因为它也是一种灵活的电力来源,并且可以使用现有的天然气基础设施 [7]。氢气的体积能量密度低,液化后可实现长距离运输。氢气液化会消耗大量能源。现有的氢气液化厂每生产一千克氢气约需 13 千瓦时电力,这约占氢气储存能量的 30% [8]。氢气液化的理论最小能耗(1 bar 时 298 K e 20 K)为每千克氢气 3.7 千瓦时电力,相当于氢气储存能量的 9.3% [8]。正在开发的新工艺可以通过磁制冷将能耗降低到每千克氢气 6 千瓦时电力,效率达到卡诺循环的 50% [9]。用于氢气液化的磁制冷系统的一种可能配置是主动磁再生器 (AMR) 系统。在该系统中,磁性材料通常是一层填充的颗粒床,它们通过一系列磁场循环以提供冷却效果。 AMR 系统已被证明具有很高的冷却能力和效率,使其成为一种很有前途的 H 2 液化技术[10]。显著提高液化效率的另一个方面是规模效应。例如,氢气液化量从每天 100 吨增加到 1000 吨,可将液化成本从 2 美元/千克 H 2 降低到 1 美元/千克 H 2 [8]。液态空气已被提议用于不同目的的冷能回收[11]。例如,使用液态空气储能 (LAES) 来储存电能,即将热能储存在液态空气中,然后用于发电[12]。液态空气已被提议用于液化天然气 (LNG) 工艺的冷能回收,类似于本文提出的方案[13]。使用
COVID-19 疫情暴露了全球医药供应链的严重弱点,导致关键医疗用品普遍短缺、药品生产延迟和疫苗分发中断。这些供应链的脆弱性因几个关键因素而加剧,包括过度依赖有限数量的国家提供活性药物成分 (API)、当地制造能力不足以及运输和分销网络的物流限制。疫情还暴露了监管框架的低效性,导致审批延迟,应对快速变化的需求的灵活性有限。此外,全球供应链缺乏透明度和实时监控,阻碍了有效的决策和协调,加剧了危机。本文深入分析了导致 COVID-19 期间医药供应链中断的关键因素,确定了缺失的环节,例如需要多样化供应源、提高制造流程的灵活性以及集成人工智能 (AI)、区块链和自动化等先进技术以优化供应链。分析强调了供应链可视性、数字创新和风险管理策略如何提高未来全球卫生危机的恢复力。除了确定这些挑战外,本文还提出了解决医药供应链缺失环节的解决方案,包括分散生产、发展区域制造中心以及建立公私伙伴关系以支持本地生产。本文还探讨了政府政策在促进更快监管审批、促进国际合作和激励创新方面的作用。关于成功的后 COVID-19 适应的案例研究,例如疫苗生产的快速扩大和个人防护设备 (PPE) 供应链的重新配置,为构建更具弹性的系统的有效策略提供了见解。最后,本文强调了协作、多利益相关方方法对于确保医药供应链的稳定性和安全性的重要性。它呼吁采取积极措施加强全球供应链基础设施,提高监管敏捷性,并采用能够预测和应对中断的新兴技术。这些举措对于确保未来流行病或其他大规模疫情期间基本药品的持续供应至关重要,从而确保日益互联互通的世界中的全球卫生安全。
为了找到一个可解释的解决方案,需要一个简单而有效的模型来在许多会话中共享行为相关的神经变化。同样,动物的行为不仅受当前任务的影响,也受动物以前试验的经验的影响。例如,[10]发现小鼠的决策表现出在数十到数百次试验中持续存在的内部状态,这可以通过隐马尔可夫模型(HMM)有效地建模。这些潜在状态可以在不同动物和实验会话中重现。许多神经科学实验表现出由这种可重现的潜在状态引起的试验间行为相关性。除了对会话间神经相似性进行建模之外,明确考虑连续试验中的这些行为相关性还可以潜在地提高神经解码性能。在这项工作中,我们开发了两种互补的方法来利用这些神经和行为相关性来改进神经解码。对于神经数据,我们采用多会话降秩模型,该模型在跨会话时具有相似的神经活动时间模式,同时保留会话特定的差异以适应个体差异。对于行为数据,我们使用多会话状态空间模型从多个会话中动物行为的试验间相关性中学习潜在行为状态。然后使用这些学习到的神经和行为表征来改进单次试验、单会话解码器。与现有的通过复杂黑盒模型在会话间共享数据的深度学习方法不同,我们的模型简单、可解释性强且易于拟合。我们使用来自国际脑实验室 [ 11 , 12 ] 的小鼠神经像素记录来评估我们的神经和行为数据共享模型,其中包括 433 个会话和 270 个大脑区域。结果显示,在不同行为任务中解码准确率有所提高。我们的方法在计算上是高效的,使我们能够创建与行为相关的时间尺度的全脑图,并识别与每个行为任务相关的关键神经元。
版权所有 © 2025 ASCD。保留所有权利。未经出版商事先书面许可,以印刷版或电子版形式复制本作品副本(包括在安全内联网上显示或存储在可制作或显示副本的检索系统或其他电子存储设备中的复制品)均属违法行为。通过仅购买授权的电子版或印刷版,并且不参与或鼓励盗版受版权保护的材料,您支持作者和出版商的权利。希望以印刷版或电子版形式复制或重新发布本作品摘录的读者可以支付少量费用,联系版权许可中心 (CCC),地址为 222 Rosewood Dr., Danvers, MA 01923, USA(电话:978-750-8400;传真:978-646-8600;网站:www.copyright.com)。要查询站点许可选项或任何其他重复使用,请联系 ASCD Permissions,网址为 www.ascd.org/permissions 或 permissions@ascd.org。欲了解授权向机构提供 ASCD 电子书的供应商名单,请访问 www.ascd.org/epubs。如需翻译咨询,请发送邮件至translations@ascd.org。
9 名受试者 每名受试者 2 个环节:训练和测试集 每环节和受试者 288 次试验 由视觉提示发起的 4 种不同的 MI 任务
本文件概述了供应链分析网络 (SCAN) 执行的国家燃料生态系统评估 (“研究”)。SCAN 是一个供应链主题专家团队,包括麻省理工学院人道主义供应链实验室,该团队在发生灾难或其他供应链中断时为 FEMA 提供实时分析,并在非灾难时期提供系统分析。工作摘要这项研究的重点是美国燃料生态系统,特别是燃料供应链下游环节的柴油和汽油网络:从炼油厂到终端(“中间一英里”)和终端到客户(“最后一英里”)。能源部、网络安全和基础设施安全局等机构密切监控供应链的上游和中游环节,这些环节(尤其是炼油能力)在重大灾难期间表现出了极强的恢复能力。供应链的下游环节经常出现问题。这项研究包括三个相互依存的部分:
第 2 部分:近期历史和批评 ...................................................................................................................................................................... 16 2.1 结构性融资:CDO 和 RMBS ........................................................................................................................................................ 18 2.2 其他结构性融资类别 ........................................................................................................................................................ 23 2.3 市政债券保险与市政债券发行人 ............................................................................................................................................. 25 2.4 监控不足 ............................................................................................................................................................................. 28 2.5 其他危机后问题 ...................................................................................................................................................................... 30 2.6 多德—弗兰克法案的影响 ............................................................................................................................................................. 32