摘要。为有机光伏细胞结构提出了半球形壳形状,旨在增强光吸收和角度覆盖。三维有限元分析方法用于研究半球形壳形活性层中的吸收光谱。研究表明,与扁平结构化的设备相比,当传入光是横向电动(TE)和横向磁性(TM)极偏振时,所提出的结构可能会导致66%和36%的吸收改善。与先前报道的半微粒壳结构相比,所提出的半球形壳结构的吸收改善高达13%(TE)和21%(TM)。也提高了所提出的结构的角度覆盖范围,达到81度(TE)和82度(TM),这对于可穿戴的电子应用非常有用,在这些应用中,入射角可以随机变化。这些改进可以归因于更好的光耦合和通过设备半球形外壳形状使活跃层引导。
球形机器人因其在勘探、隧道检查和地外任务中的应用而受到越来越多的关注。出现了各种设计,包括重心配置、基于摆的机制等。此外,还提出了各种各样的控制策略,从传统的 PID 方法到尖端的神经网络。我们的系统综述旨在全面识别和分类球形机器人采用的运动系统和控制方案,时间跨度为 1996 年至 2023 年。对五个数据库的细致搜索产生了一个包含 3199 条记录的数据集。经过详尽的分析,我们确定了一系列新颖的设计和控制策略。利用获得的见解,我们为优化球形机器人的设计和控制方面提供了宝贵的建议,既支持新颖的设计努力,也支持现场部署的进步。此外,我们还阐明了有可能释放球形机器人全部功能的关键研究方向。
通过干燥胆汁固醇液晶(CLC)对纤维素纳米晶体(CNC)干燥胆汁脱脂液晶(CNC)产生的曲面表现出的波长和极化选择性的bragg反射,这使这些生物库的纳米颗粒极有效,许多光学应用都极有效。虽然传统产生的纤维是在浮出水面,但如果给出了球形曲率,则CLC衍生的螺旋CNC排列将获得新的强大功能。干燥的CNC悬浮液液滴不起作用,因为在各向异性胶体液滴中动力学停滞的发作会导致严重的屈曲和球形形状的丧失。在这里,通过在不可压缩油滴的球形微壳中确定CNC悬浮液可以避免这些问题。这可以防止屈曲,确保强螺旋螺距压缩,并产生具有独特可见颜色的单域胆固醇球形旋转式旋转颗粒。有趣的是,受约束的收缩会导致自发穿刺,使每个粒子都有一个单个孔,可以通过该孔提取内部油相进行回收。通过在不同的分数下混合两种不同的CNC类型,在整个可见光谱中调整了反射颜色。新方法添加了一种多功能工具,以寻求使用生物培养的CLC,从而使球形弯曲的颗粒具有相同的出色光学质量和光滑的表面,与以前仅获得的曲线相同。
我们介绍了一个定理,该定理限制在球形表面上的kirigami tessellations时,带有图案性缝隙形成了自由形式的四边形网格。我们表明,球形kirigami镶嵌具有一个或两个兼容状态,即,最多有两个沿部署路径的隔离菌株配置。该定理进一步揭示了从球形到平面kirigami tessellations的刚性到扁平的过渡,并且仅当狭缝形成平行四边形空隙以及消失的高斯曲率时,这也通过能量分析和模拟来证实。在应用方面,我们显示了基于定理的Bistable球形圆顶结构的设计。我们的研究为基于欧几里得和非欧几里得几何形状的可变形结构的合理设计提供了新的见解。
石墨烯/铜复合粉具有石墨烯涂层球形铜粉的独特核心壳结构,石墨烯和铜的复合材料充分利用了其力学,电力和热力学的协同优势。
在中欧、东欧、东南欧和东北欧 23 个国家中,乌克兰在 IT 领域人才排名第七。这一排名主要归因于该国的信息和通信技术教育水平,学生和毕业生人数、国际数学奥林匹克竞赛成绩以及 PISA 数学素养排名均证明了这一点。尽管乌克兰落后于波兰、立陶宛和匈牙利,但它已经超过了保加利亚、爱沙尼亚、斯洛文尼亚和其他几个国家。然而,在劳动力指标方面——该指标考虑了 ICT 行业的就业人数和开发人员数量——乌克兰远远落后于前十名中的其他国家。
简单总结:纳米技术为癌症的诊断和治疗提供了新方法。与“游离”形式的药物相比,纳米药物可以增加疾病部位的有效载荷浓度、降低毒性并增强治疗效果。球形核酸 (SNA) 是一种新型寡核苷酸纳米治疗剂,目前正在探索将其作为基因调控和免疫刺激结构,以克服实体肿瘤中的耐药性和免疫抑制。本综述重点介绍了开创性研究,这些研究将 SNA 确定为基因调控、先天免疫激活和下一代癌症疫苗开发的强大平台,讨论了最近将基础发现从实验室转化为临床的努力,并展望了旨在充分利用 SNA 平台治疗潜力的未来研究。
b'porous [13]或树突[14]生长形态。[9]在基于TFSI的电解质中检测到具有不同形状的半球3D颗粒,这是施加电流密度的函数。[12]在Mg(TFSI)2盐电解质中,MGCL 2作为添加剂,连续的剥离和镀金导致SEI层的破裂和改革,从而在相应的断裂部位和不均匀的MG沉积中产生大量有效的电流密度。[13]通过这种机制,半球形沉积物进一步降解为多孔形态和被困的沉积物,这些沉积物是不可逆转地损失的。最极端的非均匀Mg生长形式是树突的形成,在mg阳极下发生的频率要小得多。到目前为止,仅在0.921 MACM 2的电流密度下仅针对MEMGCL的0.5 MOLDM 3溶液检测到树突。[14]'
摘要:我们在自由衰减跌落试验中研究了球形浮标的升沉运动。采用综合方法研究浮标的振动,包括实验测量和互补数值模拟。实验是在配备一系列高速运动捕捉摄像机和一组高精度波浪仪的波浪池中进行的。模拟包括三组复杂程度不同的计算。具体来说,在一组计算中,流体体积 (VOF) 方法用于在重叠网格上求解不可压缩的两相 Navier-Stokes 方程,而其他组中的计算基于 Cummins 和质量弹簧阻尼器模型,这两个模型都植根于线性势流理论。实验数据与 VOF 模拟结果具有很好的一致性。虽然准确性较低,但两个降阶模型的预测也被发现非常可信。关于浮标的运动,获得的结果表明,在从大约等于其静态平衡吃水的高度(约为其半径的 60%)释放后,浮标经历了近谐波阻尼振动。进行的分析表明,浮标的吃水长度对振动的频率和衰减率有很大的影响。例如,与平衡状态下半浸没的相同尺寸的球形浮标(即吃水量等于半径)相比,测试浮标的振荡周期大约短 20%,并且其振荡幅度衰减速度几乎快两倍。总体而言,本研究为浮球的运动响应提供了更多见解,可用于优化浮标设计以实现能量提取。