课程描述:本课程将帮助学生设计,分析和解释自己的实验和观察,并在生态学和其他生物领域建立研究计划。本课程回顾了统计建模的各个方面,以帮助对生态数据的收集,组织和解释做出决策。它基于案例研究的修订,说明了频繁的研究问题和对潜在解决方案的讨论。尽可能评估和比较替代方法。该课程补充了有关基本统计数据的课程,并致力于初学者和高级本科研究人员。该课程将实验设计,执行和分析中的概念面临,作为改善生态研究的工具。
•狐猴到达岛上时没有捕食者,并且能够迅速适应和蔓延。这导致了新物种的创造。•马达加斯加的生态系统非常多样化,可以支持不同类型的动物,并允许动物适应(随着时间的推移)。这会创建新物种!
全球湖泊生态系统受到极端热量的增加,但它们对湖泊变暖的影响仍然很少。在这项研究中,我们采用了一种基于物理的混合/统计模型来评估1985年至2022年中国2260湖的地表水温变化的贡献。我们的研究表明,在中国,极端热量的速度约为2.08天/十年,强度约为0.03°C。湖地表水温度的变暖速率从0.16°C/十年降低到极端热量后的0.13°C/十年。热量对长期湖面温度变化产生了相当大的影响,占研究湖泊内变暖趋势的36.5%。鉴于极端热量对湖面水的平均变暖的重要影响,必须在气候影响研究中充分考虑它们。
tr-生态学是科学的一个分支,研究了彼此与其环境的生物关系,已经用作环境科学。在此定义中,它旨在用活物来表达;他们是人类,动物和植物的社区。在整个生命和无生命的环境中,使用生态系统的定义。生态学对于所有生物都是常见的,并且对可能影响生物的基本问题感兴趣,它不是研究生物体的特定器官和这些器官的重要过程,而是生物所在的重要环境以及与其他生物的相互关系的重要环境。生态学是科学的分支,研究了喜欢的关系及其环境,已经进入了环境科学。在这个定义中,生物是什么意思;他们是社区,动物和植物。生态系统的定义用于实体和非生活环境。生态学处理所有生物共有的基本问题并且可能影响生物的生态问题。生物多样性 /生物versity < / div>
遗传学是对特征如何从一代传递到另一代的研究。这些特征的“指示”位于生物体的基因中。身体计划,身体特征和生物体的某些行为都由基因控制。当雄性和雌性Komodos的基因聚集在一起形成后代时,后代有相同的50/50机会是男性或女性。但是,当只有雌性komodo参与繁殖时,大约一半的鸡蛋将是雄性,而另一半将是不可行的。这一切都与如何传递基因的副本以及如何在Komodo Dragons繁殖的早期阶段结合起来有关。
作为一个较大的道路翻新项目的一部分,已提议使用位于林德利(Lindley)东北约11公里的农场贝尔什巴(Re)的旧借入坑(Re)。根据DFFE筛选工具,旧的借入坑区将影响对陆地生物多样性主题敏感性低的区域,需要陆地生物多样性合规性声明。作为采矿许可的环境授权的一部分,该文档是陆上生物多样性的旧borrowory borrowor pit区域的合规性声明。这些合规性声明与NEMA程序的评估程序和最低标准一致,以报告申请环境授权时确定的环境主题(NEMA,2020)。本报告旨在验证和评估旧借入坑区域位置接收环境的当前环境条件。此外,本报告还评估了拟议的借入坑对接收环境的预期环境影响,并提供了建议和缓解措施。明显可见的历史采矿是先前采矿活动的证据。这种历史采矿的症状包括研究区域对GH6的组成虚假陈述。这种偏差是在缺乏中央自由状态草地植被类型的几种预期的主要草种中可以看出的。因此,该地点的生态功能可能会受到以前的采矿活动的负面影响。研究区域位于林德利(Lindley)11公里以内,在很大程度上是农业环境。通过以前的采矿活动,大约不到50%的地点已转化。由于周围的农业实践和以前的旧借入矿井区域内的农业实践和以前的采矿活动的影响,剩余的自然植被在公平的生态功能中被考虑。未观察到花卉SCC,但是,观察到一个受省保护的物种。在植被的当前状态下,花卉SCC的出现较低。由于旧的借入坑区域位于人为堵塞的自然流系统的100m之内,因此建议使用用水许可证。此外,建议一位合格的湿地专家对旧借入坑区进行此水体的河岸栖息地描述。在栖息地和花卉组件方面的环境影响评估预计在有或没有缓解措施的情况下会很低。因此,不预计使用旧借入坑的使用不会在现场对环境产生巨大影响。但是,这些影响将是永久的,必须注意将旧借入坑对环境的长期影响最小化。
海洋生态学中的机器学习是彼得的技术和应用垃圾的ovreriew;布罗迪,斯蒂芬妮;科尔迪尔,特里斯坦;右Barcellos,Dogo; Devos,保罗;何塞(Jose)的费尔南德斯·萨尔瓦多(Fernandes-Salvador);我芬纳姆,詹妮弗;戈麦斯,亚历山德拉;尼尔斯的奥拉夫·汉德加德(Olav Handegard);豪厄尔(Kerry L。); Jamet,Cédric;凯尔尔(Kyrre)的Heldal Kartveit; Hassan Moustahfid;辣椒,克莱亚;政治家,迪米特里斯; Sauzède,Raphaëlle;玛丽亚索科洛娃;劳拉的Uusitaro; Van den Bulcke,毕业; TM Van Helmond,Aloysius;沃森,约旦;韦尔奇,希瑟;贝尔特兰·佩雷斯(Beltran-Perez),奥斯卡(Oscar);小杂货店,塞缪尔(Samuel); S Greenberg,David;库恩(Kühn),伯恩哈德(Bernhard); Kiko,Rainer; LO,Madiop; m lopes,鲁本斯;克拉斯的莫勒(Möller)迈克尔斯,威廉;铲子,艾哈迈德; Romagnan,Jean-Baptiste;舒切特,皮亚; Seydi,Vahid; Villathy,塞巴斯蒂安;马尔德,凯蒂尔;艾里森(Jean-Loyvier ICS)艾里森(Irisson)
在Teja Tscharntke的一些关键论文中摘要建立了摘要,我们讨论了许多复杂性的农业系统和农业景观,我们认为应该将其包括在未来的生产景观研究中。我们认为,现代农业景观对生物多样性友好型的转型需要将农业措施,土地利用实践和景观措施的结合,但也需要支持较少强化生产的政策。我们认为,在未来的研究中,景观生态学家应承认生物多样性的多重价值,并使用这些价值的简单物种丰富度指标放弃。生态学家宁愿专注于了解什么物种及其相互作用实际上在生产生态系统中所做的。被拒绝了景观生态学的一些神话,例如全球粮食稀缺,土地少量和强化农业是可持续粮食生产的基准。我们表明,全球农业系统根深蒂固,这阻碍了更可持续的生产系统的发展。为了将当前的农业系统转变为可持续生产和生物多样性友好的景观,我们需要更广泛的观点,以结合对社会生态系统和过程的知识和理解。我们以瑞典粮食系统的四种未来场景来体现这一点,这些情况以不同的方式建议为生物多样性目标做出贡献,尽管也许不是通过Teja和许多其他生态学家所设想的对生物多样性友好的景观。
农业生态学作为一种系统方法,可以很好地解决粮食生产系统在多个尺度上为生物多样性施加的复杂挑战[1,2]。因此,它为各国提供了一种全面的方法,可以在全球生物多样性框架(GBF)下履行其承诺。这是一个多功能系统,可以有效地解决食品生产系统对不同级别的生物多样性提出的复杂问题。通过大规模拥抱农业生态学,例如,通过将其集成到国家生物多样性战略和行动计划(NBSAPS)中,国家可以同时实现与减少对生物多样性威胁的威胁以及满足人们的需求以及可持续使用和利益 - 福利和利益 - 享受的目标[3]。
土壤微生物群落在提供基本生态系统服务中起着关键作用,受到可能随着土地管理而变化的几种物理和化学土壤特性的显着影响。这项研究探讨了不同土地覆盖类型(针叶树架,阔叶林,灌木丛,牧场/草地和农田)对在意大利,西班牙和portugal选择中等高度荒漠化风险的南部欧洲地区的物理,化学和微生物特性(均导致土壤健康)的物理,化学和微生物特性(均导致土壤健康)的影响。在土地覆盖率不同的地点,我们确定了微生物生物量(C MIC),微生物代谢的活性和指数,包括C MIC /C ORG比率,代谢商(QCO 2)和矿化商(QM)。还测量了土壤物理和化学特性,包括散装密度(BD),水含量(WC),pH,阳离子交换能力(CEC),总有机C(C ORG)及其某些不稳定分数,可提取的C(c Ext)和可矿物质的C(c Min)C(C min),总N含量和总n含量和总含量和C/N。结果表明,根据WC,CEC,C ORG,C ext,c min,n,c/n的趋势,土地覆盖类型在确定针叶树覆盖物的微生物变量的幅度中起着重要作用。与土地覆盖相比,干旱指数对研究变量的影响较低。与C ORG含量较高的地点相比,Corg含量较低的位点(大多数农田)倾向于更快地损失C,这是由高QM值所表明的,除了西班牙酸性土壤外。因此,必须采取紧迫的措施来抵消c poorer土壤失去C的趋势,促进土地覆盖类型,从而通过确保稠密和更连续的土壤覆盖时间来促进土壤恢复。我们还确定了一组最小的土壤变量,这些变量提供了有关沙漠中ification风险的短期(微生物变量)和长期(物理和化学变量)的短期(微生物变量)和长期(物理和化学变量)的信息。