自古以来,人们就认识到,某一物种的卵子会发育出具有该物种相应解剖结构的个体(图 1 A)。这是如何发生的?是什么造成了后生动物具有如此显著的多尺度复杂性,从组织中细胞类型的分布到身体器官的拓扑形状和排列,再到整个身体结构的几何布局?人们普遍认为答案就在基因组中,但事实并非如此简单;DNA 只是编码特定的蛋白质,没有直接编码解剖结构。因此,从第一原理可以清楚地看出,模式控制涉及一种代码:卵子或其他细胞类型内解剖位置和结构的编码,以及在细胞实现不变形态发生时对这些信息进行逐步解码(图 1 B)。应该指出的是,目前对这些代码的理解还处于起步阶段,许多基本问题仍有待解决。尽管遗传学和分子基因组学取得了进展,我们仍然无法预测
尽管在CMS上应用神经生物电子设备设计是一种概念证明,但显然,对于CAR-DIAC模型而言,需要进一步优化,并且需要对CMS的特定生理特征进行生物电子网格设计的修订。为了增强网状生物电子设备的鲁棒性并优化了专门针对CMS的网格脚手架设计,我们完善了所选的色带宽度(30-60µm),从而减少了丝带之间的间距,以提高细胞接近性,并增加设备厚度,以提高刚度(5ppss vs. 0.5ppa vs. 0.5ppa)和交接。这些修饰显着改善了细胞对设备的相互作用,促进了细胞伸长和附着。未来的工作将评估新设备的几何形状和刚度对CMS钙处理的影响。这些初步结果表明,我们的生物电子平台在创建用于再生医学的心脏组织模型方面表现出了希望,这可能提供了用于心血管疾病疗法的新途径。利益冲突不适用
通过许多研究人员的精确实验研究,电生理学的研究取得了重大进展。该领域也通过将这些实验与基于电磁理论,电化学和其他基本概念的数学描述相结合来提出。本教科书提供了电生理学的定量介绍,首先是第1章中必要数学的摘要。第二章提供了导电媒体中电场和当前流量的简洁概述,从物理科学和工程原理中借鉴了生物学应用。随后的六章构成了本文的核心材料。第3章介绍了如何在膜之间存在电压和电流,以及如何使用Nernst – Planck方程进行评估。第4章讨论了膜通道,这对于细胞兴奋性至关重要,而第5章检查了产生动作电位的膜电压变化的时间过程。第6章涵盖了动作电位向下纤维的传播,并且在第7章中对心脏起搏器中使用的人工刺激的反应进行了处理。最后,第8章描述了这些活性过程在周围细胞外空间中产生的电压和电流。以前的版本因其对电生理主题的全面报道而受到赞扬,包括细胞膜的电性能,动作电位,电缆理论,神经肌肉连接,细胞外场和心脏电生理学。**传记** Robert Plonsey是生物医学工程专家,目前是杜克大学名誉教授。他拥有著名机构的多个学位,包括加利福尼亚大学(1955年)的电气工程博士学位和斯洛伐克科学学院的技术科学博士(1995年)。在他的整个职业生涯中,他曾在凯斯西部储备大学(1976-1980)和杜克大学(1968-1983)的教授担任生物医学工程主席。**奖项和赞誉** Plonsey对生物医学工程的贡献已通过许多奖项得到认可: *美国科学进步协会会员 * William Morlock Award * William Morlock Award(1979年) *百年纪念奖章(1984)(1984年)在IEEE IEEE Ingineering获得IEEE MEDIC SORICED的IEEE ENGINEERIG (1997年)获得了国际生理与工程医学科学联盟 * Theo Pilkington杰出教育家奖(2005年) *杰出服务奖(生物医学工程科学,2004年)**当前工作** Roger C. Barr是杜克大学生物医学工程和培养科副教授。他曾担任生物医学工程系和医学与生物学协会IEEE工程副总裁兼总裁。Barr获得了杜克大学学者奖(1991年),并撰写了100多个有关生物电论的研究论文。**文本简介**提供的文本是电生理学的简介,重点是定量方法。本书涵盖了电场的各个方面和在生物环境中的电流流动,包括膜电压,动作电位,传播,人工刺激反应以及细胞外电压/电流产生。随后的章节探讨了心脏和神经电生理学,以及膜生物物理学的最新发展。电生理学领域通过许多研究人员进行的各种实验研究的结合,从而取得了重大进步。此外,准确的理论概念和数学描述的发展统一了许多实验观察,为应对各种电生理挑战提供了坚实的基础。此外,采用向量和矢量演算,大大简化了本书中介绍的几个主题的数学公式。本章深入研究向量和标量的基本面,以及代数操作,例如应用于向量的添加和乘法。它还对梯度和差异概念进行了深入的评论,因为它们经常遇到。
由于精确的实验研究,电生理学的研究取得了重大进步,这些研究基于电磁场理论,电化学和其他相关学科整合了数学描述。本电子书旨在使用定量方法对电生理学进行介绍,第一章涵盖了基本数学,第二章提供了对电场原理和当前传导媒体流量的简洁概述。随后的六章构成了核心材料,涵盖了诸如跨膜,膜通道,动作电位产生和传播的电压/电流分布等主题。本书还讨论了纤维对人工刺激的反应,例如心脏起搏器中的纤维以及这些过程在周围细胞外空间中产生的电压/电流。本文的先前版本因其对基本电生理主题的全面报道,包括细胞膜特性,动作电位,电缆理论和细胞外田地而受到赞誉。作者的目标是对该领域进行定量介绍,使医学物理学,生物医学工程,生物学和生理学的学生可以使用它。著名的专家Roger C. Barr,杜克大学生物医学工程教授,为他的领域做出了重大贡献。 他于1995年从斯洛伐克科学学院获得了技术科学博士,并担任了各种学术职位,包括凯斯西部储备大学生物医学工程系主席(1976- 1980年)和杜克大学教授(1968-1983)。著名的专家Roger C. Barr,杜克大学生物医学工程教授,为他的领域做出了重大贡献。他于1995年从斯洛伐克科学学院获得了技术科学博士,并担任了各种学术职位,包括凯斯西部储备大学生物医学工程系主席(1976- 1980年)和杜克大学教授(1968-1983)。Barr因其工作而获得了许多奖项,包括Ragnar Granit奖(2004年),Centennial Medal(1984)和Millennium Medal(2000)。作为杜克大学的教授,巴尔(Barr)教授生物电课程,是100多个关于生物电论主题的研究论文的作者。他还是IEEE和美国心脏病学院的院士。文本引入了电生理学,一种定量方法,用于了解生物环境中的电场和当前流动。它首先要总结必要的数学概念,然后深入研究核心材料,涵盖膜电压,动作电位,传播以及对人工刺激的反应。随后的章节探讨了这些原理在心脏和神经电生理学中的应用,其中包括有关膜生物物理学最新发展的一章。该领域通过实验研究,理论概念和数学描述取得了长足的进步,最终为解决各种电生理问题提供了基础。
-) 是一种可溶性阴离子,自然界中浓度较低,但作为固体弹药中广泛使用的氧化剂,由于 1997 年之前对该化合物的处置不受管制,它已成为全美地下水的重要污染物。高氯酸盐是甲状腺碘吸收的竞争性抑制剂,摄入高氯酸盐会导致甲状腺激素分泌减少,这对胎儿和新生儿的正常发育尤其令人担忧。最近的报告记录了乳制品和人类母乳中的高氯酸盐,表明其已上升到食物链的顶端。目前对这种化合物的修复通常涉及离子交换技术,虽然这种方法很有效,但只是将处理过的水中的高氯酸盐浓缩到盐水溶液中。相反,许多微生物能够呼吸高氯酸盐,将其转化为无害的氯化物。因此,生物修复被认为是去除和降解污染物的最有效方法,并且已经开发出许多策略来利用这些异化高氯酸盐还原菌 (DPRB)。传统的生物修复策略是基于使用廉价且容易获得的有机电子供体(如乙醇和醋酸盐)刺激 DPRB。虽然这些化合物可以有效地刺激高氯酸盐还原,但它们也会刺激微生物的大量生长,包括 DPRB 和非目标生物。生物的过度生长会导致生物污垢,这会导致处理失败,并刺激不必要的代谢,如铁和硫酸盐还原,从而产生有毒和恶臭的化合物。此外,添加不稳定的有机物会对生物修复方案产生较差的反馈控制,在饮用水处理的情况下,可能会导致下游消毒副产物 (DBP)。为了解决这些问题,研究了一种用于刺激 DPRB 的电化学系统。已经开发了各种电化学系统来刺激微生物代谢(第 1 章),但没有一种应用于高氯酸盐还原。该系统之所以具有吸引力,是因为它能够为微生物提供还原当量,用于还原高氯酸盐,而无需添加会刺激生长的碳。此外,改变可用电位和电流的能力提供了更严格的反馈控制和高氯酸盐的热力学靶向的可能性,但不会提供更多的电负性电子受体。研究了利用阴极电极作为高氯酸盐还原电子供体的实验(第 2 章)。在生物电反应器 (BER) 的阴极室中,利用蒽醌-2,6-二磺酸盐 (AQDS) 作为电子穿梭机对先前分离的 DPRB 的纯培养物进行测试。这些实验作为概念验证,并证明微生物可以成功地以这种方式还原高氯酸盐。然而,由于这些纯培养物在生长条件下无法在 BER 中存活,因此在阴极室中进行富集以分离能够长期发挥作用的微生物。从这种富集物中分离出两种新的 DPRB,并且
直到最近,Bio-CCS主要在很长的时间内(例如2050年及以后)就其潜力和缺点进行了讨论,但现在越来越关注更多的近期方面。IEA生物能源期间项目的部署BECCS/U Value Chains运行2019-2021,并致力于提供有关将BECC从飞行员带到全尺度项目的机会和挑战的见解。为此,该项目不仅将重点放在技术方面,还将关注BECCS商业模式以及公共政策在实现可持续部署BECC中发挥的作用。重点是供应链的CO 2捕获,运输和存储阶段。上游生物量原料供应系统只会很短暂地涉及,因为这些问题在其他IEA生物能源工作中进行了详细分析。
生物电子设备在从生物标志物传感、癌症和癫痫诊断到血糖监测和脑活动记录等许多领域都至关重要。1–3 然而,许多(如果不是大多数)用例,特别是那些必须在生物系统中不可避免的复杂流体环境中发生的用例,都会受到由于化学和生物材料在设备表面非特异性吸附而发生的污染的负面影响。因此,人们付出了大量的努力4来开发保护生物电子设备长期功能的防污策略(图1)。在本研究更新中,我们讨论了一般的防污原理和主要的污染机制,并给出了一些目前用于防止污染物结合到设备表面并在发生污染后将其去除的策略的示例。污染,特别是生物污染,经历四个不同的阶段。5 首先,原始表面被一层小分子的调节层覆盖;在第二阶段,调节层被主要污垢层覆盖;在第三阶段,污垢表面会受到生物膜的强烈生长;最后,该生物膜进一步发展为宏观污垢。6 糖或其他小分子对调节层的吸附通常发生在
1 美国伊利诺伊州埃文斯顿西北大学生物集成电子中心。2 美国俄亥俄州立大学材料科学与工程系。3 美国俄亥俄州立大学慢性脑损伤中心。4 韩国水原成均馆大学电气与计算机工程系。5 美国伊利诺伊州埃文斯顿西北大学材料科学与工程系。6 美国伊利诺伊州埃文斯顿西北大学生物医学工程系。7 美国伊利诺伊州埃文斯顿西北大学神经外科系。8 美国伊利诺伊州埃文斯顿西北大学化学系。9 美国伊利诺伊州埃文斯顿西北大学机械工程系。10 美国伊利诺伊州埃文斯顿西北大学电气工程系。11 美国伊利诺伊州埃文斯顿西北大学计算机科学系。 12 美国伊利诺伊州埃文斯顿西北大学范伯格医学院。13 美国伊利诺伊州埃文斯顿西北大学奎里-辛普森生物电子研究所。14 以下作者贡献相同:宋恩明、李菁华、王尚敏、白武斌。✉ 电子邮件:jrogers@northwestern.edu
目的:多极颅内电刺激 (iEBS) 是一种有潜力改善单极和双极 iEBS 临床应用的方法。目前用于研究多极 iEBS 的工具是专有的,入门成本高,缺乏管理不同刺激参数和电极的灵活性,并且可能包含必要的探索性研究不需要的临床特征。这是限制理解和有效应用多极 iEBS 的一个因素。为了应对这些挑战,我们开发了自适应等时神经刺激生物电路由器 (BRAINS) 板。方法:BRAINS 板是一种经济高效且可定制的设备,旨在使用常见的研究电极设置在 16 通道电极阵列上进行多极刺激实验。BRAINS 板与微控制器接口,允许用户将每个通道配置为阴极或阳极输入,建立接地连接或保持浮动状态。该设计优先考虑易于集成,利用微控制器和模拟信号隔离器等标准工具,同时提供根据实验条件自定义设置的选项。它还确保输出隔离,降低噪音,并支持远程配置更改以快速切换电极状态。为了测试该板的功效,我们对单极、双极和多极刺激方案进行了台式验证。在小鼠初级视觉皮层中体内测试了相同的方案,并使用神经像素记录进行测量。主要结果:与单独的隔离刺激器的基线性能相比,BRAINS 板在均方根误差 (RMSE) 噪声或信噪比方面没有显著差异。该板支持以高达 600 Hz 的速率更改配置,而不会引入残余噪声,从而实现时间多路复用多极刺激所需的高频切换。意义:BRAINS 板代表了探索性脑刺激研究的重大进步,它提供了一种用户友好、可定制、开源、21 且具有成本效益的工具,能够进行复杂、可重复和精细控制的刺激实验。22 BRAINS 板具有有效的实时信息处理和高效的参数探索能力,23 可以增强对 iEBS 的探索性研究,并改善多极和闭环 iEBS 的临床应用。24
最新的动力和符合微电子制造的进展为健康监测和疾病治疗开辟了机会。其他材料工程的进步,例如导电,皮肤样水凝胶,液体金属,电动纺织品和压电薄膜的开发提供了安全舒适的方式,可以与人体接口。一起,这些进步使具有集成的多模式感应和刺激能力的生物电子设备的设计和工程能够在身体上的任何地方佩戴。在这里特别感兴趣的是,外耳(耳膜)提供了一个独特的机会来设计具有高度可用性和熟悉程度的可扩展生物电子设备,鉴于耳机的广泛使用。本评论文章讨论了能够生理和生物化学感应,认知监测,靶向神经调节以及对人类计算机相互作用的控制的耳朵生物电子设备开发的最新设计和工程进步。从这个可扩展的基础上讲,研究和工程的增长和竞争将增加,以推动耳态生物电子学。这项活动将导致患者和消费者对这些智能耳机式设备的采用增加,以跟踪健康,治疗医疗状况以及增强人类计算机的相互作用。