大约四十年前(1980 年),美国哲学家约翰·塞尔在他的论文《思想、大脑和程序》(Searle:1980)中发表了他对他所谓的强人工智能(人工智能)论题的著名驳斥,塞尔声称“经过适当编程的计算机确实具有认知状态,程序因此可以解释人类认知”(Searle:1980,417)。正如他所写,塞尔的论文的直接收件人是 R. Shank 和 R. Abelson 的研究(Shank,Abelson:1977,248),他们的作者声称他们设法创建了一个能够理解人类故事含义的计算机程序。例如,关于一个故事:“一个人去一家餐馆点了一个汉堡包;当汉堡包送来时发现它被烧焦了,这个人愤愤不平地离开了餐馆,没有付钱。”问题是:“他吃了汉堡包吗?”“适当”编程的计算机回答很可能没有。在他的文章中,Searle 既没有分析 Shank 和 Abelson 使用的测试计算机的程序,也没有分析他们程序的运行原理。他提出了一个问题,当计算机没有相应的视觉、嗅觉和味觉体验时,是否可能谈论理解,因为计算机无法知道“汉堡包”、“烧焦”等词的含义。正如 Searle 所相信的,Shank 和 Abelson 进行的人工智能研究遵循了 A. Turing 众所周知的测试范式,根据该测试,计算机对“人类答案”的令人满意的模仿与人的合理答案相似。在图灵测试中,扮演专家角色的人以硬拷贝格式提出问题,并以同样的方式从两个他看不见的对话者那里得到答案,其中一个是人,另一个是专门编程的计算机。根据图灵的说法,令人满意地通过测试的标准是,专家在五分钟的调查后,在不超过 70% 的情况下识别出计算机(图灵:1950,441),图灵认为这可以相信计算机具有思考能力。
在人类决策中的理性行为和非理性行为之间的紧张关系已在从哲学到心理学,神经科学再到行为经济学的广泛学科中得到认可。多代理相互作用的模型,例如冯·诺伊曼(Von Neumann)和摩根斯特恩(Morgenstern)的预期效用理论和纳什(Nash)的游戏理论,为代理在寻求理性时应如何行事提供了严格的数学框架。然而,理性假设受到了广泛的挑战,因为人类决策通常是非理性的,受偏见,情感和不确定性的影响,在某些情况下甚至可能会产生积极影响。行为生态学试图解释这种非理性行为,包括卡尼曼的双重过程理论和Thaler的裸露概念,并说明了与理性的偏差。在本文中,我们通过因果关系分析了这种张力,并开发了一个框架,该框架说明了理性和非理性的决策,我们将其称为因果游戏理论。然后,我们引入了一个称为反事实理性的新颖概念,该概念允许代理人做出选择,以利用其非理性倾向。我们将NASH均衡的概念扩展到反事实的行动,并表明,根据标准游戏理论,反事实行动之后的策略占据了策略。,当并非所有有关其他代理的信息都可用时,我们进一步开发了一种算法来学习此类策略。
数学系 ........................................................................................................................................ 1
结果:研究最终包括六项研究。1。四项研究主要集中在使用体外或体内实验的抗炎作用上。2。两项研究主要集中于使用体外实验的抗氧化剂的作用。3。使用体外或体内研究研究了其他药理作用,包括改善胃肠道功能,抑制体温降低和抗衰老。
认知技术被称为新型人工智能,根据 Davenport 和 Ronanki (2018) 的说法,它将彻底改变商业世界。根据 Davenport 和 Ronanki 的研究,35% 的受访经理认为人工智能将使他们能够做出更好的决策。“有必要对工作流程进行系统性重新设计,以确保人类和机器能够增强彼此的优势并弥补弱点”(Davenport & Ronanki,2018,第 9 页)。然而,作者并未说明这一切将如何实现,以及管理者如何将这些工具融入到他们的工作中。事实上,许多研究人员和管理人员都承认技术为组织决策过程的质量带来了好处,以及信息和通信技术 (ICT) 提供的支持,这尤其要归功于近年来人工智能的进步。有些人甚至希望很快看到人工智能为管理者自己做决策(Davenport & Ronanki,2018;Duan 等人,2019)。鉴于 Ackoff 提出的一些要素,人们可能会认为,管理者的决策将得到越来越多的支持,甚至有一天,管理者可能会被人工智能“取代”在组织中执行决策任务。相反,其他作者建议,我们应该寻求利用基于人工智能的 BI 工具来表达管理者的独特能力,例如他们的直觉。对他们来说,这将允许将人类思维、认知偏见和启发式方法带回来(Gigerenzer & Gaissmaier,2011),可能在决策算法本身中,或者至少通过互补的决策过程(Gilboa 等人,2018 年)。
本文关注的是货币政策的作用,并认为积极的货币政策可以影响实际产出的行为,尽管存在理性预期。构建了一个具有重叠劳动合同的理性预期模型,每个劳动合同为期两个时期。这些合同为模型注入了短期工资粘性的元素。由于货币当局改变货币存量的频率比重新谈判劳动合同的频率高,并且考虑到劳动合同的假定形式,货币政策能够影响产出的短期行为,尽管它对长期产出行为没有影响。
摘要:本文介绍了一种预测云量对光伏 (PV) 场在预测期内影响的新方法,该方法利用 PV 板作为传感器,结合物理和持久性模型并集成储能系统控制。所提出的方法需要模拟由 22 kV 可再生能源和储能组成的电网,从而能够评估与国家电网相比的网络行为。为了优化计算效率,作者开发了 PV + 储能模块的等效模型,在考虑天气条件(尤其是云量)的同时准确模拟系统行为。此外,作者介绍了一种控制系统模型,该模型能够有效响应网络动态并使用 PID 控制器对储能系统进行全面控制。精确的电力预测对于保持电力连续性、管理整个电力系统的爬坡率以及确保电网稳定性至关重要。我们的方法能够与太阳能围栏系统集成,这证明了其创新性及其对可再生能源领域做出重大贡献的潜力。作者还评估了各种针对电网的情景,以确定它们对电网稳定性的影响。研究结果表明,储能与所提出的结合物理和持久性模型的预测方法的集成为有效管理电网稳定性提供了一种有希望的解决方案。
通过人工智能 (AI) 从大规模数字化数据集中提取信息在规模和变化速度上都是前所未有的。新的数据捕获源包括数字成像、GPS 定位和移动、高分辨率生物标记和生物传感器、实时自动捕获市场和环境数据。澳大利亚羊毛行业是评估此类新表型对盈利能力和先进农业系统影响的理想选择。该项目对人工智能(尤其是深度学习)的实用性进行了初步评估,以准确预测图像、生物标记和动物传感器输出的性能结果。我们开发了一种半自动化系统,该系统能够在田间/院子条件下拍摄高分辨率图像并将其链接到动物电子识别 (EID)。该系统还允许半自动记录体重。使用该系统,我们使用 4 个摄像机角度(即正面、顶部和背面)从 4072 只绵羊创建了 1,482,041 幅图像的图像库。所有绵羊在拍摄图像时都称重,并根据面部覆盖(1-5)、颈部皱纹(1-5)和身体皱纹(1-5)进行主观评分,并识别为 EID。使用图像子集,我们将数字信息应用于深度学习分析管道,特别是使用卷积神经网络 (CNN) 分析。使用 Keras (https://keras.rstudio.com) 和 Tensorflow (https://www.tensorflow.org) 开发模型。将数据细分为训练集、评估集和独立测试集,以预测 AI 预测相应表型的能力。使用侧面和顶部摄像头,预测算法可以分别以 86% 和 87% 的准确率预测体重,并且没有偏差。顶部和侧面摄像头的信息相结合,准确率为 89%。对于面部识别,AI 经过训练可以检测每只羊的头部形状和身体形状,只要羊来自相同的训练和测试集,准确率为 99%。使用每只羊的面部和身体图像的随机子集,AI 算法可以以 94% 和 98% 的准确率将匿名面部和身体图像与羊 EID 匹配,当同时使用面部和身体信息时,准确率为 99.7%。但是,当 5 个月后测试同一只羊的图像时,准确率会大大降低(<10%),除非两个时间点的图像都包含在训练数据集中(准确率提高到 90-98%)。使用皱纹评分的全量表(1-5)预测准确率较低,为 38%-58%。这表明,在面部识别的初始训练中,需要从同一只羊那里获取非常大的数据集,并随着时间的推移不断重复,以检测每只羊独特的生物特征。一旦建立了这样的初始训练数据集,面部识别就可以应用于新的人群。对于颈部和身体皱纹,AI 管道能够将动物分配到高皱纹或低皱纹类别,准确率为 73%-90%,具体取决于预测的相机角度和皱纹特征。AI 预测与手动评分的准确率相匹配,高和低皱纹评分的准确率为 98%-99%,扩展的 1-5 级皱纹评分的准确率为 57%-60%。对于面部遮盖评分,在 2 和 3 之间划分的初始分类器显示的结果略好于随机结果。这在很大程度上取决于种群中面部遮盖数据的分布,其中 87% 的动物被分配到中心类别,不到 1% 的动物属于极端类别。这没有为 AI 算法的训练和验证提供任何能力。为了测试 AI 在描述面部遮盖分数方面的实用性,ML 分类器经过训练可以区分面部遮盖分数 2 和 4。当从图像中裁剪出多个区域时,分类器的预测能力得到证明,准确率为 87%。使用更平衡的数据集,其中每个面部遮盖分数都得到同等代表,很可能区分所有 5 个面部遮盖分数。对生物传感器和生物标记技术的范围及其与深度学习 AI 技术相结合时对绵羊产业定义表型的可能效用进行了审查。全球在该领域的投资成果可能会转移到绵羊产业,并将加速数字化数据量的涌现,其中大多数数据都适合人工智能和深度学习管道。在生物传感器领域,动物加速度计和地理定位设备最有前景。在生物标记领域,基因组学被认为具有最大的潜在直接优势,因为样本可以在早期采集,不受生理状态的影响,并且可以从单个样本中为几乎所有性状提供表型和遗传预测值。大规模蛋白质组学(包括免疫学)和代谢组学研究都具有广阔的未来,因为它们与生理(生产/疾病)状态密切相关,并且适合通过人工智能进行大规模分析,并且可能为复杂性状提供低成本的表型分析,尤其是与动物生物传感器结合时。
全球能源环境正在发生变革性的转变,因为各国努力减少对化石燃料的依赖并减轻气候变化的影响。到2050年,欧盟致力于实现零排放的承诺,这促使人们对可再生气体的兴趣,这是其更广泛的脱碳战略的一部分。在各种可再生能源技术中,气体已成为一种有前途的解决方案,为将有机材料转化为清洁能源提供了多功能方法。欧洲沼气协会(EBA)起草了一篇论文,探讨了欧洲生物质和废气的状态。第1章包括关于气体在未来能源系统中的作用的讨论,重点是推动其部署的相关政策。第2章介绍了该领域的关键技术方面的介绍,例如原料预处理,气体操作参数和最先进的技术。第3章总结了将气体燃料转换为各种最终产物的合成的升级途径,以及对生物炭的价值的讨论,这是产品通过产品的气体化。此外,已经绘制了欧洲运营和计划的气体装置,并在第4章中分析了主要趋势。第5章介绍了影响气体发展部门的市场和经济考虑因素,重点是技术经济方面。促进可再生能源,生物量项目的财务激励措施和旨在减少温室气体排放的监管框架对于促进对气体技术技术的投资至关重要。随着技术的进步和市场状况的发展,生物量和废物气体可能在向可持续能源解决方案过渡方面起着不可或缺的作用,同时减轻与化石燃料消耗相关的环境影响。