摘要:针对从人类有机体衍生的信号的研究变得越来越流行。在这个领域,基于脑电波的脑部计算机界面扮演了特殊的角色。由于脑电图记录设备和较低的设定价格的缩小尺寸,它们变得越来越受欢迎。不幸的是,此类系统在生成的命令数量方面受到很大的限制。这尤其适用于不是医疗设备的集合。本文提出了一个基于稳态视觉诱发电位(SSVEP),EOG,眼睛跟踪和力反馈系统的混合脑计算机系统。这样的扩展系统消除了许多特定的系统缺点,并提供了更好的结果。本文的第一部分介绍了有关混合脑部计算机系统中应用的方法的信息。根据操作员将机器人的尖端放置在指定位置的能力来测试提出的系统。提出了工业机器人的虚拟模型,该模型用于测试。在现实生活中的工业机器人上重复测试。通过启用和禁用的反馈系统验证了系统的定位精度。在模型和真实对象上进行的测试结果清楚地表明,在由操作员控制时,力反馈提高了机器人尖端的定位精度。此外,模型和现实生活中的工业模型的结果非常相似。在下一阶段,对使用BCI系统进行分类项目的可能性进行了研究。该研究是在模型和真正的机器人上进行的。结果表明,可以使用来自人体的生物信号进行排序。
Realpac,其董事,高级职员,员工或任何其他负责人负责的人都不对本出版物中包含的语言,措辞或标准的使用,效果或适当性承担责任,或任何印刷或印刷错误或印刷错误或遗漏。REALPAC不保证使用本出版物中包含的信息的数据,公式,模板,方法,标准和过程的准确性。REALPAC及其董事,高级管理人员,员工或任何其他负责人负责的其他人对使用此处包含的信息造成的损害或损失概不负责。REALPAC不提供投资,环境,法律或税收建议。读者会自担风险,并敦促咨询自己的专业顾问以进行进一步确认和更多信息。
在附录A或B至10 CFR第1021部分中列出的一系列动作中, 适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。在附录A或B至10 CFR第1021部分中列出的一系列动作中, 适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。
摘要 — 配电系统中的分布式能源 (DER),包括可再生能源发电、微型涡轮机和储能,可用于在极端事件后恢复关键负载,以提高电网弹性。然而,在可再生能源不确定性和燃料可用性的情况下,正确协调系统中的多个 DER 以进行多步恢复过程是一个复杂的顺序最优控制问题。由于其处理系统非线性和不确定性的能力,强化学习 (RL) 成为解决复杂顺序控制问题的潜在有力候选者。此外,RL 的离线训练在在线操作期间提供了出色的行动准备,使其适用于需要及时、正确和协调行动的负载恢复等问题。在本研究中,研究了基于简化单总线系统的配电系统优先负载恢复:在可再生能源发电预测不完善的情况下,将 RL 控制器的性能与确定性模型预测控制 (MPC) 的性能进行了比较。我们的实验结果表明,与基线控制器相比,RL 控制器能够从经验中学习,适应不完善的预测信息并提供更可靠的恢复过程。
在 D 维格子上距离 r 中的 α ≤ D — 近年来引起了人们的极大兴趣。它们存在于量子计算和模拟的主要实验平台中,以及量子信息加扰和快速纠缠产生的理论模型中。由于此类系统不具备局部性概念,因此人们对其动态特性缺乏一般性的了解。为了解决这个问题,我们证明了两个新的 Lieb-Robinson 型界限,它们限制了强远程相互作用系统中信号发送和加扰的时间,此前尚无此类系统的严格界限。我们的第一个界限适用于可映射到具有远程跳跃的自由粒子汉密尔顿量的系统,并且对于 α ≤ D/ 2 是可饱和的。我们的第二个界限适用于一般的远程相互作用自旋汉密尔顿量,并给出了对所有 α < D 的系统广泛子集的信号发送时间的严格下限。这种多站点信号传输时间限制了强远程相互作用系统中的加扰时间。
I. 引言随着火星立方体一号 (MarCO) 任务的成功和小型化技术的进步,小型卫星不再局限于在低地球轨道 (LEO) 运行。相反,通过低推力小型卫星进行深空探索、技术演示和有针对性的科学任务可能很快就会成为现实。事实上,即将到来的任务,如月球冰立方、LunaH-map 和 NEA Scout,将把小型卫星作为次要有效载荷搭载在 Artemis 1 上,部署到多体重力环境内的各种位置[1-3]。然而,混沌多体系统中航天器的轨迹和机动设计本质上是一个高维问题,而且由于结合了与低推力小型卫星相关的约束而变得更加复杂:有限的推进能力、运行调度约束以及固定但不确定的初始条件。虽然存在多种基于最优控制和动态系统理论 (DST) 的数值方法,用于在多体系统的近似动力学模型中构建低推力轨迹和机动剖面,但自主和稳健设计策略的开发需要一种替代方法。强化学习 (RL) 是天体动力学界越来越感兴趣的一类用于实现轨迹和机动设计的自主性的算法。RL 算法通常涉及代理与环境交互,通过对动态状态采取行动来最大化奖励函数。代理会探索环境,直到确定了决定每个状态下最佳动作的策略。如果制定得当,这些算法可以探索许多状态-动作对以确定最佳动作,同时限制对次优动作的探索。RL 方法已用于天体动力学中各种应用和动力学模型的轨迹和机动设计。例如,Dachwald 探索使用人工神经网络和进化算法设计配备低推力航天器到水星的转移 [ 4 ]。Das-Stuart、Howell 和 Folta 近期提出的方法利用 RL 和基本动力学结构来设计圆形限制三体问题 (CR3BP) 中周期轨道之间的复杂转移轨迹 [ 5 ]。此外,Scorsoglio、Furfaro、Linares 和 Massari 还使用演员-评论家深度强化学习 (DRL) 方法来开发地月空间近直线轨道航天器的对接机动 [ 6 ]。最近,Miller 和 Linares 应用著名的近端策略优化 (PPO) 算法来设计地月系统中遥远逆行轨道之间的转移,通过 CR3BP 进行建模 [ 7 ]。这些研究的成功为天体动力学界继续探索和扩展 RL 在多体轨迹设计策略中的应用奠定了宝贵的基础。具体来说,本文以这些先前的研究为基础,重点关注实施基于 RL 的轨迹设计方法的一个重要组成部分:制定一个奖励函数,该函数既反映了设计目标,也反映了影响恢复机动轮廓操作可行性的约束。该分析是在低推力 SmallSat 的轨迹设计背景下进行的,以快速访问位于与 CR3BP 中的周期轨道相关的稳定流形上的附近参考轨迹。
抽象的常规预测驱动的气候变化适应方法创造了一系列不确定性,可以压倒决策者并延迟主动的适应反应。强大的决策做出与预测指导方法相关的分析步骤,并在特定决策者的能力和漏洞的背景下对适应性进行了重新定义。在采用这种自下而上的方法时,目的是确定对不确定性不敏感的适应解决方案。然而,尽管在发达国家的大规模适应项目中使用了该方法的使用,但几乎没有经验证据可以测试是否可以成功地在发展中国家应用。决策过程的复杂现实,需要将定量数据与具有质量理解和竞争环境,社会经济和政治因素相结合的需求构成了适应性的显着障碍。在发展中国家,这些考虑因素特别相关,并且存在其他压力,这可能会限制强大决策方法的吸收和效用。在本文中,我们调查了该方法在发展中国家中有价值的说法。作为启发式决策框架,与稳健决策相关的挑战和机遇是通过从适应沿海基础设施到改变南非环境风险的案例研究的见解来讨论的。就提取了有关此框架改善发展中国家适应决策不确定性的能力的课程。