摘要 — 配电系统中的分布式能源 (DER),包括可再生能源发电、微型涡轮机和储能,可用于在极端事件后恢复关键负载,以提高电网弹性。然而,在可再生能源不确定性和燃料可用性的情况下,正确协调系统中的多个 DER 以进行多步恢复过程是一个复杂的顺序最优控制问题。由于其处理系统非线性和不确定性的能力,强化学习 (RL) 成为解决复杂顺序控制问题的潜在有力候选者。此外,RL 的离线训练在在线操作期间提供了出色的行动准备,使其适用于需要及时、正确和协调行动的负载恢复等问题。在本研究中,研究了基于简化单总线系统的配电系统优先负载恢复:在可再生能源发电预测不完善的情况下,将 RL 控制器的性能与确定性模型预测控制 (MPC) 的性能进行了比较。我们的实验结果表明,与基线控制器相比,RL 控制器能够从经验中学习,适应不完善的预测信息并提供更可靠的恢复过程。
主要关键词