摘要:由于可再生能源在电网中的大规模渗透,储能(ES)设备的利用(ES)设备促进可再生能源消耗并降低用户成本已逐渐成为发展趋势。彻底探索了ES在用户方面的经济利益,并建立了ES的全面好处模型。此外,还建立了共享ES容量配置的投资决策模型。基于每日负载概况的相似性,提出了一种基于高和低相似性的用户选择方法,以提高共享ES的收入。一个示例用于分析和比较用户在高和低负载概况相似性下共享的ES的收入。给出了投资决策的共享能力配置,以实现更大的共享经济利益,这与用户数量呈正相关。
由新南威尔士州财政部能源与气候变化办公室出版 标题 峰值需求削减计划 副标题 规则变更 2 咨询文件 首次出版:2023 年 10 月 ISBN 编号:978-1-923076-73-0 版权 本出版物受版权保护。除 (a) 任何徽章、徽标、商标或其他品牌;(b) 任何第三方知识产权;以及 (c) 个人信息(如人物照片)外,本出版物根据 Creative Commons Attribution 3.0 Australia 许可证获得许可。许可条款可在 Creative Commons 网站上找到:creativecommons.org/licenses/by/3.0/au/legalcode 新南威尔士州财政部要求以以下方式将其归属为许可材料的创作者:© 新南威尔士州(新南威尔士州财政部),(2023)使用许可根据 Creative Commons 署名 3.0 澳大利亚许可证,您可以为任何目的复制、分发、展示、下载和以其他方式自由处理本出版物,只要您将能源与气候变化办公室和/或新南威尔士州财政部归为所有者。但是,如果您希望向其他人收取出版物访问费(成本价除外);将出版物纳入广告或待售产品中;修改出版物;或在网站上重新发布出版物,则必须获得许可。您可以在部门网站上自由链接到该出版物。
使用电力供暖有助于脱碳,并为整合可变可再生能源提供灵活性。我们使用开源电力行业模型分析了德国 2030 年情景中的电储热器的情况。我们发现,灵活的电加热器通常会增加低可变成本的发电技术的使用,而这些技术不一定是可再生能源。然而,使传统的夜间储热器在时间上更加灵活只能带来中等程度的好处,因为在供暖季节白天的可再生能源供应有限。因此,相应的投资成本必须非常低才能实现总系统成本效益。由于储热器仅具有短期储热功能,因此它们也无法协调冬季热量需求的季节性不匹配和夏季可再生能源供应量高的问题。未来的研究应评估长期储热的好处。
抽象检索纳米级在纳米级的电阻图迅速通过无损的信号噪声比快速检查是一种未满足的需求,这可能会影响从生物医学到能量转化的各种应用。在这项研究中,我们开发了一种多模式功能成像仪器,其特征在于阻抗映射和相位定量,高空间分辨率和低时间噪声的双重能力。为了实现这一目标,我们推进了一个定量的相成像系统,称为Epi-Magnififer图像空间光谱显微镜结合了电动启动,以提供光路和电阻抗的互补图。我们用光路差和电阻抗变化的高分辨率图展示了我们的系统,这些图可以区分纳米化的,半透明的结构化涂层,涉及两种具有相对相似电性能的材料。我们绘制的异质界面对应于与钛(二氧化物)在玻璃支撑上沉积的钛(二氧化物)的过层中的直径较小的孔暴露的二锡氧化物层。我们表明,在宏观电极的相位成像期间的电气调制是决定性地检索具有亚微米空间分辨率的电阻抗分布,并且超出了基于电极的技术(表面或扫描技术)的局限性。发现,这些发现是通过理论模型证实的,该模型可以很好地拟合实验数据,从而可以通过高空间和时间分辨率实现电流图。新颖的光电化学方法的优点和局限性为测量本地电力场测量的更广泛的电气调制光学方法提供了基础。
检测病原体,例如细菌和病毒,由于它们的数量和多样性,在分析医学中仍然是一个巨大的挑战。使用纳米材料开发快速,廉价,特定和对病原体的敏感检测,与微流体设备,扩增方法进行集成,甚至结合这些策略的策略,都受到了显着的关注。尤其是在威胁健康的COVID-19爆发之后,病原体的快速而敏感的分解变得非常关键。可以通过电化学,光学,质量敏感或热方法来实现病原体的检测。在其中,通过带来不同的优势,即它们表现出更广泛的检测方案和实时量化以及无标签的测量方法,这是非常有希望的,即它们提供了更广泛的应用。在这篇综述中,我们讨论了使用电化学生物传感器检测细菌和病毒的最新进展。此外,通过分析物,生物识别和转导元件,广泛回顾了用于病原体检测的电化学生物传感器。还讨论了各种病原体与电化学生物传感器的不同制造技术,检测原理和应用。
在 DLW 技术中,值得注意的是直接激光金属化 (DLM) 技术,该技术专注于精确选择和合成前体,用一定强度和脉冲持续时间的激光照射,导致化学反应并在表面形成金属微图案 [23,37,38]。例如,研究表明,DLM 可成功用于在玻璃和陶瓷表面制造铜、镍、金和其他金属基微图案 [39,40,41]。由于许多纳米材料的前体制备可能很复杂且耗时,DLM 方法的进一步发展导致找到了廉价、环保且易于合成的新型前体。研究表明,深共熔溶剂 (DES) 可能取代人们所寻求的前体,这种溶剂此前已被证明是分析化学中的有效萃取剂 [42] 以及电化学金属化的介质 [43]。
现代物理学中暗物质(DM)的性质仍然难以捉摸。良好动机的DM候选者是光玻色粒颗粒。QCD轴是DM [1-5]的可行候选者,除了解决了强大的CP问题[6-8]。轴突样伪级颗粒[4,5](QCD轴的广义形式)和矢量颗粒(例如,暗或隐藏的光子)[9,10]是同样动机的DM候选者。这样的新粒子通常抑制了与标准模型的相互作用,但是可以将其用于在实验室中搜索它们[10-15]。Light DM也称为波浪状,与较重的尤其型DM候选相反。由于银河尺度上此类颗粒的占用人数很高,因此光DM表现为经典波。这样的DM背景可以建模为经典的随机场A 0cosðΩTÞK·xÞd[16],其中一个0¼的效果ρDMP = m DM是由DM密度ρDM和质量M DM给出的场振幅; j kj≃mdm v是波数; ϕ是一个随机阶段。随机场的振荡的特征频率主要由DM质量给出,并以动力学的校正为ω≃Mdm m m dm v 2 = 2,其中v〜10-3是银河系中的病毒速度。因此,光DM场在空间分离上是连贯的λc〜ðm dmvÞ -1和在天然planck单元中表达的时间尺度τc〜ðm dm v 2 - 1 [17]。正在进行几个实验程序,或提出了用于探测光DM的参数空间,并使用