自从分离出来以来,石墨烯就因其独特的性质而受到学术界和工业界越来越多的关注。然而,“我的材料是什么”的障碍阻碍了进一步的商业化。X 射线光电子能谱 (XPS) 被认为是一种确定元素和化学组成的首选方法。在这项工作中,研究了石墨烯颗粒形貌对 XPS 结果的影响,并调查了其作为 X 射线能量的函数的关系,使用具有 Al K 𝜶 辐射的传统 XPS 和使用 Cr K 𝜶 辐射的硬 X 射线光电子能谱 (HAXPES)。因此,信息深度在 10 到 30 纳米之间变化。为此,对两种含有石墨烯纳米片的商业粉末进行了比较,它们的横向尺寸约为 100 纳米或在微米范围内。这些较大的粉末以石墨烯层堆栈的形式存在,用扫描电子显微镜进行检查。然后用氧或氟对这两种粒子进行功能化。发现石墨烯颗粒的尺寸会影响功能化程度。只有 XPS 和 HAXPES 的结合才可以检测颗粒最外层表面甚至堆叠层的功能化,并为功能化过程提供新的见解。
燃油供应链是印度尼西亚下游石油和天然气业务的重要活动之一。但是,该公司在通过小规模的燃料站分发燃油时遇到了几个障碍。本研究旨在应用软系统方法(SSM)方法来获得从终端到小型燃油站的燃油供应链活动的概念评估。但是,这项研究仅通过添加系统图和多参与者分析表来更好地理解问题,仅执行了四个SSM步骤。尽管如此,这项研究成功地确定了涉及的问题,参与者以及燃料供应链活动中的参与者之间的关系。因此,它可以为所涉及的利益相关者(尤其是公司负责人)提供转型步骤的概述。将在未来的研究中使用AHP-TOPSIS混合方法解决问题来继续这项研究。
我们提出了一种在可控原子、分子和光学系统中制备自旋压缩态的协议,特别适用于与里德堡相互作用兼容的新兴光学时钟平台。通过将短程软核势与外部驱动器相结合,我们可以将自然出现的 Ising 相互作用转换为 XX 自旋模型,同时打开多体间隙。间隙有助于将系统保持在可以产生计量学上有用的自旋压缩的状态集合流形内。我们检查了我们的协议对实验相关退相干的稳健性,并显示出比缺乏间隙保护的典型协议更优的性能。例如,在 14 × 14 系统中,我们观察到软核相互作用可以产生与全对全 Ising 模型相当的自旋压缩,即使存在相关的退相干,其压缩量与具有 1 / r 3 偶极相互作用的无退相干 XX 自旋模型相同,并且比具有 1 / r 6 相互作用的无退相干 XX 自旋模型高 5.8 dB 增益。
当今无人航天器和卫星的设计和实施费用以电子为主导,这是一个难以预测的,并且通常低估了成本[17]。现代应用程序对计算能力的不断增长需要复杂的计算平台,例如多核和异质体系结构。已经存在几种实施此类高级效率的商业企业解决方案(COTS)解决方案,并且太空机构对整合它们表现出极大的兴趣[18,20]。但是,就可靠性和时机而言,COTS组件通常没有必要的安全性。因此,它们在关键场景中的使用提出了许多挑战,尤其是对于处理器而言。的确,由于安全要求,COTS平台必须确保系统正确性,可以将其分为
基于嵌入方法的图形表示可以更轻松地分析网络结构,可用于各种任务,例如链接预测和节点分类。这些方法已被证明在各种环境中都是有效的,并且已成为图形学习领域的重要工具。这些方法易于实施,它们的预测会产生可解释的结果。但是,大多数图形嵌入方法仅依赖于图形结构信息,并且不考虑节点/边缘属性,从而限制其适用性。在本文中,我们提出了图理论设计,以将节点和边缘属性纳入拓扑结合,从而使图形装饰方法无缝地在属性图上无缝工作。为了找到给定属性图的理想表示形式,我们提出了原始网络中的增强特殊子图结构。我们讨论了所提出的方法的潜在挑战,并证明了其一些理论局限性。我们通过比较15个标准生物信息学数据集上的最先进的图形分类模型来测试方法的功效。与原始图上的结果相比,在增强图上,在增强图上的分类精度最高可提高高达5%的分类精度。©2023 Elsevier B.V.保留所有权利。
尽管在康复领域取得了令人鼓舞的成果,但上肢机器人可穿戴设备(例如,针对因神经退行性疾病而导致身体残疾的人)是否可以制成便携式并适合日常使用仍不清楚。我们展示了一种轻巧、完全便携、基于纺织品、柔软可充气的可穿戴机器人,用于肩部抬高辅助,为上肢提供动态主动支撑。该技术在无电时机械透明,可以定量评估用户的自由运动,并且每个上肢仅增加 150 克的重量。在 10 名患有不同程度神经肌肉损伤的肌萎缩侧索硬化症 (ALS) 患者中,我们发现主动运动范围立即得到改善,并且两名 ALS 患者在 6 个月内持续的身体恶化得到补偿。除了运动能力的改善外,我们还表明,这种机器人可穿戴设备无需任何训练即可改善功能活动,恢复日常生活基本活动的表现。此外,肩部肌肉活动和肌肉自觉用力减少,同时握持物体的耐力增加,凸显了该装置减轻 ALS 患者肌肉疲劳影响的潜力。这些结果代表着上肢辅助、柔软、机器人可穿戴设备的日常使用又迈进了一步。
计算机体系结构基础:处理器、内存、输入和输出设备、应用软件和系统软件:编译器、解释器、高级和低级语言、结构化编程方法简介、流程图、算法、伪代码(冒泡排序、线性搜索 - 算法和伪代码)
摘要:为了帮助利益相关者规划、研究和开发混合可再生能源系统 (HRES),已报告了大量建模技术和软件模拟工具的开发。对这些无疑复杂的系统的彻底分析与可再生能源潜力的有效利用和相关设计的细致开发密切相关。在此背景下,还利用了各种优化约束/目标。这项具体工作首先对开发的建模技术和模拟软件进行了彻底的审查,试图为现有的各种 HRES 模拟方法定义一种普遍接受的分类方法。此外,还详细分析了广泛使用的优化目标。最后,通过研究基于不同风能和太阳能潜力组合的九个案例研究,确定了两种商业软件工具 (HOMER Pro 和 iHOGA) 的敏感性。将这两种商业工具的结果与 ESA 微电网模拟器进行了比较,后者是由西阿提卡大学机械工程系软能源应用和环境保护实验室开发的软件。基于作为输入的可再生能源潜力多样化的结果评估导致了对所选软件工具中检测到的偏差的深入评估。
在安装实用软件之前,需要拥有国家仪器的IEEE-488控制器卡或GPIB/USB转换器电缆。在任何一种情况下,都必须在计算机上安装关联的驱动程序。在进行应用程序软件之前,必须配置计算机并建立通信。GPIB板索引和分配的仪器地址应在运行公用事业软件时建立通信。建议在安装该实用程序软件之前安装国家仪器的测量和自动化资源管理器(NI MAX),因为它将有助于对您的GPIB通信接口进行配置和测试(请参阅:http://wwwwww.ni.com/tutorial/tutorial/4594/ and and and and and and and and and and and and anget-启动/设置硬件/仪器控制/gpib-usb)。