在 DLW 技术中,值得注意的是直接激光金属化 (DLM) 技术,该技术专注于精确选择和合成前体,用一定强度和脉冲持续时间的激光照射,导致化学反应并在表面形成金属微图案 [23,37,38]。例如,研究表明,DLM 可成功用于在玻璃和陶瓷表面制造铜、镍、金和其他金属基微图案 [39,40,41]。由于许多纳米材料的前体制备可能很复杂且耗时,DLM 方法的进一步发展导致找到了廉价、环保且易于合成的新型前体。研究表明,深共熔溶剂 (DES) 可能取代人们所寻求的前体,这种溶剂此前已被证明是分析化学中的有效萃取剂 [42] 以及电化学金属化的介质 [43]。
许多新兴应用中的主流介电储能技术,如可再生能源、电气化交通和先进推进系统,通常需要在恶劣的温度条件下运行。然而,在当前的聚合物介电材料和应用中,优异的电容性能和热稳定性往往是互相排斥的。在这里,我们报告了一种定制结构单元以设计高温聚合物电介质的策略。预测了由不同结构单元组合而成的聚酰亚胺衍生聚合物库,并合成了 12 种代表性聚合物用于直接实验研究。这项研究为实现在高温下具有高能量存储能力的坚固稳定的电介质所必需的决定性结构因素提供了重要的见解。我们还发现,当带隙超过临界点时,高温绝缘性能的边际效用会递减,这与这些聚合物中相邻共轭平面之间的二面角密切相关。通过实验测试优化和预测的结构,观察到在高达 250°C 的温度下能量存储增加。我们讨论了将该策略普遍应用于其他聚合物电介质以进一步提高性能的可能性。
新沉积的介电材料的质量控制是 nanoTDDB 使用的另一个例子。具体来说,当使用原子层沉积 (ALD) 制备薄氧化膜时,需要对该过程进行微调以产生可重复的结果。这里用 ALD 制备二氧化硅膜,并用椭圆偏振法测量其厚度。由于在晶圆的不同位置观察到一些膜厚度变化,因此使用 Jupiter XR AFM 进行 nanoTDDB 测量以测量膜的电性能。使用 AFM 软件中编程的自动程序在晶圆的各个位置进行测量。
这些行为并非直接源自其组成材料,而是源自其亚波长结构[1,2],以及最近的主动控制[3]。在光学领域,超材料在电磁学和光子学中提供了突破性的应用[4-6],例如以亚波长分辨率聚焦和成像[7]和负折射[8],因此在过去的几十年里引起了人们的极大兴趣。这些亚波长结构能够直接调整光的性质,包括振幅、相位和偏振。由于其支持表面等离子体极化子的能力[9],银和金等贵金属一直是可见光超材料构造块的传统材料选择,而等离子体太赫兹 (THz) 纳米天线通常基于重掺杂的半导体。 [10] 然而,这些超材料通常依赖于其组成块的谐振行为,并且在光频率下存在高电阻损耗,这限制了此类超材料和相关设备的功能在尖锐的频带范围内。更一般地说,基于谐振行为的超材料仅在
具有交错结构(例如蚀刻停止 (ES) 和背沟道蚀刻 (BCE) 结构)的铟镓锌氧化物 (IGZO) 薄膜晶体管 (TFT) 已被证明可用作平板显示器中的电路器件 [1,2]。然而,由于栅极和源/漏极 (S/D) 电极之间的重叠,这些交错结构器件不可避免地具有较大的寄生电容,从而导致 TFT 器件的工作速度较低。自对准 (SA) 共面结构是克服该寄生电容问题的一种有前途的解决方案 [3]。形成导电的 n + -IGZO 以获得有源 S/D 区和 S/D 电极之间的欧姆接触是 SA 共面器件的重要工艺。已经提出了许多用于该工艺的方法,并且制备的 IGZO 器件具有良好的性能。通常使用等离子体处理(Ar、H2 等)[4,5] 和深紫外(DUV)照射 [6] 。然而,这些解决方案需要一个额外的步骤,如图 1a 所示,这会导致额外的工艺成本。在 SiO2 栅极绝缘体(GI)过蚀刻期间形成 n + -IGZO 是一种简单的方法 [7,8]。然而,当 GI 蚀刻等离子体可以蚀刻 IGZO 薄膜时,这种方法并不适用。最近,已经证明通过简单地涂覆有机层间电介质(ILD)可以形成 n + -IGZO 区域,并且获得了 24 Ω·cm 的沟道宽度归一化 S/D 串联电阻(R SD W)[9]。本报告展示了在 ILD 沉积过程中形成 n + -IGZO 区域的可能性。基于这个想法,其他制造低 R SD W SA 共面 IGZO TFT 的新方法值得研究。在这项工作中,我们使用磁控溅射工艺沉积 SiO x ILD 并同时为 SA 共面 IGZO TFT 形成 n + -IGZO 区域。这样,ILD 沉积和 n + 形成可以合并为一个步骤,如图 1b 所示。制造的器件具有相当低的 R SD W 。降低 IGZO 薄膜的机制
摘要:栅极绝缘体是决定石墨烯场效应晶体管 (GFET) 性能的最重要因素之一。栅极电压对导电通道的良好静电控制需要较薄的栅极氧化物。由于缺乏悬挂键,通过原子层沉积 (ALD) 工艺生长的栅极介电膜通常需要种子层。种子层可实现介电膜的高质量沉积,但可能导致最终介电膜厚度大幅增加。针对该问题,本文提出了一种改进工艺,在原子层沉积之前使用蚀刻溶液去除自氧化的 Al 2 O 3 种子层,Al 2 O 3 残留物将提供石墨烯表面的成核位点。受益于电介质膜厚度的减小,与使用标准 Al 蒸发种子层方法的 GFET 相比,使用此方法作为顶栅电介质膜沉积工艺的 GFET 的跨导平均增加了 44.7%。
对于高相干性固态量子计算平台来说,微波频率下低损耗的电介质是必不可少的。在这里,我们通过测量集成到超导电路中的由 NbSe 2 –hBN–NbSe 2 异质结构制成的平行板电容器 (PPC) 的品质因数,研究了六方氮化硼 (hBN) 薄膜在微波范围内的介电损耗。在低温单光子范围内,提取的 hBN 微波损耗角正切最多在 10 −6 中间范围内。我们将 hBN PPC 与铝约瑟夫森结集成,以实现相干时间达到 25 μs 的传输量子比特,这与从谐振器测量推断出的 hBN 损耗角正切一致。与传统的全铝共面传输相比,hBN PPC 将量子比特特征尺寸缩小了约两个数量级。我们的研究结果表明,hBN 是一种很有前途的电介质,可用于构建高相干量子电路,它占用空间大大减少,能量参与度高,有助于减少不必要的量子比特串扰。广义的超导量子比特包括由电感和电容元件分流的约瑟夫森结,它们共同决定了它的能谱 1 。虽然理想情况下,组成超导量子比特的材料应该是无耗散的,但量子比特退相干的主要因素是量子比特的电磁场与有损体积和界面电介质的相互作用 2 。在典型的超导电路中,介电损耗可能发生在约瑟夫森结的隧穿势垒中,以及覆盖设备的许多金属和基底界面的原生氧化层中 3、4 。这些电介质通常是具有结构缺陷的非晶态氧化物,可以建模为杂散两能级系统 (TLS)。虽然这些 TLS 的微观性质仍有待完全了解,但已确定 TLS 集合与超导量子电路中的电磁场之间的相互作用限制了量子比特的相干性和超导谐振器的品质因数。人们还怀疑 TLS 可能存在于设备制造过程中留下的化学残留物的界面处 4、5。
利用第一性原理计算,我们研究了六种过渡金属氮化物卤化物 (TMNH):HfNBr、HfNCl、TiNBr、TiNCl、ZrNBr 和 ZrNCl 作为过渡金属二硫属化物 (TMD) 沟道晶体管的潜在范德华 (vdW) 电介质。我们计算了剥离能量和体声子能量,发现这六种 TMNH 是可剥离的并且具有热力学稳定性。我们计算了单层和体 TMNH 在平面内和平面外方向的光学和静态介电常数。在单层中,平面外静态介电常数范围为 5.04 (ZrNCl) 至 6.03 (ZrNBr),而平面内介电常数范围为 13.18 (HfNBr) 至 74.52 (TiNCl)。我们表明,TMNH 的带隙范围从 1.53 eV(TiNBr)到 3.36 eV(HfNCl),而亲和力范围从 4.01 eV(HfNBr)到 5.60 eV(TiNCl)。最后,我们估算了具有六个 TMNH 单层电介质和五个单层通道 TMD(MoS 2 、MoSe 2 、MoTe 2 、WS 2 和 WSe 2 )的晶体管的电介质漏电流密度。对于 p- MOS TMD 通道晶体管,30 种组合中有 25 种的漏电流小于六方氮化硼 (hBN),一种众所周知的 vdW 电介质。对于以 HfNCl 为栅极电介质的 ap -MOS MoSe 2 晶体管,预测最小双层漏电流为 1.15×10 -2 A/cm 2。据预测,HfNBr、ZrNBr 和 ZrNCl 也会在某些 p-MOS TMD 晶体管中产生微小的漏电流。
我们对凝结问题的理解正在迅速发展,目前,该领域获得的许多新见解在很大程度上定义了当代科学的面貌。此外,该领域的发现正在塑造现在和未来的技术。如此,很明显,未来发展的最重要结果和指示只能由合作的国际作家群体涵盖。“冷凝物质科学中的现代问题”是一系列关于凝结物质科学的贡献和专着,该专题由Elsevier Science Publishers的部门North-Holland Pharpishing发表。在杰出的咨询编辑委员会的支持下,该系列选择了当前感兴趣的领域,这些领域已予以审查。苏联和西方学者都在为该系列做出贡献,因此,每个贡献的数量都有两个编辑。专着。完整系列将提供冷凝物质科学的最全面覆盖范围。本系列基础的另一个重要结果是出现了来自不同国家的学者之间一种相当有趣且富有成果的合作形式。我们深信,这种在科学与艺术领域的国际合作以及其他对人类活动的社会有用领域将有助于建立信心与和平的氛围。出版社“ nauka”以俄罗斯语言出版。以这种方式确保了最广泛的读者群。
摘要 — 当氧化层变薄,栅极长度变短时,MOSFET 器件中会出现短沟道效应 (SCE)。本研究的目的是寻找一种新的电介质和栅极材料来取代传统的氧化物二氧化硅 (SiO 2 ) 和多晶硅作为栅极材料。本研究的目的是研究使用不同类型的高 k 电介质材料和锗 (Ge) 作为栅极材料的 MOSFET 的性能。使用 Silvaco TCAD 工具制造和模拟 MOSFET 结构。基于电流-电压 (IV) 特性评估 MOSFET 的整体性能。结果表明,用 HfO 2 和 Ge 作为电介质和栅极材料制造的 MOSFET 具有较高的驱动电流,漏电流比传统 MOSFET 降低了 0.55 倍。因此,与 SiO 2 和多晶硅相比,MOSFET 结构中 HfO 2 和 Ge 的组合具有最佳性能,因为它在缩小器件尺寸时产生较小的漏电流和较小的 V th,从而降低 SCE。