摘要:车辆外部的干扰会导致视觉注意力分散,从而导致交通事故。作为一种低成本、高效的广告解决方案,广告牌被广泛安装在路边,尤其是高速公路上。然而,广告牌对驾驶员分心、目光注视和认知的影响尚未得到充分研究。本研究利用定制的驾驶模拟器和同步脑电图 (EEG) 和眼动追踪系统来研究与驾驶员视觉信息处理相关的认知过程。区分了与辅助驾驶刺激相关的目光注视和其他可能成为分心源的刺激。本研究比较了驾驶员对广告牌注视和车辆仪表板注视的认知反应。测量的眼球注视相关电位 (EFRP) 显示 P1 成分相似;然而,随后的 N1 和 P2 成分不同。此外,当驾驶员受到限速标志提示而调整行驶速度时,会观察到 EEG 运动反应。实验结果表明,所提出的测量系统是评估驾驶员认知的有效工具,并表明对广告牌的认知参与水平可能是驾驶员分心的前兆。将实验结果与文献中的人类信息处理模型进行了比较。
摘要:泵送水力储存(PHS)是一项完善的技术,可在长时间内储存能量。斯里兰卡(Sri Lanka)是一个拥有水力发电资源的国家,具有巨大的PHS开发潜力。该国主要水电厂所在的中央高地,由于其有利的地形,高降雨和大型水库提供了许多合适的PHS开发地点。PHS可以提供可靠的能源,减少该国对化石燃料的依赖,并减轻常规能源的负面影响。尽管具有潜力,但斯里兰卡的PHS发展仍面临着几个挑战,包括高资本成本,征用土地问题和环境问题。本文回顾了斯里兰卡电力部门的当前状态,评估了斯里兰卡的PHS潜力,并检查了斯里兰卡的PHS开发的好处。
。cc-by-nc 4.0国际许可证未获得同行评审的认证)是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
摘要:运动电位的执行或想象力反映了可以通过脑电图(EEG)作为运动相关皮质电位(MRCP)记录的皮质电位。单个试验中MRCP的识别是获得对脑计算机界面(BCI)的自然控制的挑战性可能性。我们提出了一种基于最佳非线条过滤器的MRCP检测的新方法,处理包括延迟样品(获得时空过滤器)的不同脑电图的不同通道。可以通过更改时间过滤器的顺序和输入数据的非线性处理来获得不同的输出。通过在训练集上进行交叉验证,选择最佳的分类(适用于用户),并从最佳三个投票以使用测试数据获得输出,从而评估了这些文件的分类性能。将该方法与我们小组最近引入的另一种最先进的过滤器进行了比较,该方法将其应用于16位执行或想象50个自定进度的上limb Palmar Grasps的健康受试者中。新方法在80%的整体数据集上具有中位数的准确性,这比以前的过滤器(即63%)要好得多。对于在线BCI系统设计具有异步,自定为自定进定应用的可行性。
摘要:动作的执行或想象由皮质电位反映,可通过脑电图 (EEG) 记录为运动相关皮质电位 (MRCP)。从单次试验中识别 MRCP 是实现脑机接口 (BCI) 自然控制的一项具有挑战性的可能性。我们提出了一种基于最佳非线性滤波器的 MRCP 检测新方法,处理包括延迟样本在内的不同 EEG 通道(获得时空滤波器)。通过改变时间滤波器的顺序和输入数据的非线性处理,可以获得不同的输出。这些滤波器的分类性能通过对训练集进行交叉验证来评估,选择最佳滤波器(适应用户)并从最佳三个滤波器中进行多数投票,以使用测试数据获得输出。将该方法与我们团队最近推出的另一种最先进的滤波器进行比较,该滤波器应用于 16 名健康受试者记录的 EEG 数据,这些受试者执行或想象 50 次自定步调的上肢手掌抓握。新方法对整个数据集的平均准确率为 80%,明显优于之前的滤波器(即 63%)。对于具有异步、自定步调应用程序的在线 BCI 系统设计,它是可行的。
记录和刺激人类深层大脑活动的技术进步已导致神经科学领域出现重大发现,并促进了神经和精神疾病新疗法的开发。然而,进一步的进展受到设备限制的阻碍,因为无法记录人类自由移动行为期间的单个神经元活动。此外,目前批准用于人类的植入式神经刺激设备刺激可编程性有限,全双工双向功能也受到限制。在本研究中,我们开发了一种可穿戴双向闭环神经调节系统 (Neuro-stack),并用它来记录人类静止和移动行为期间的单个神经元和局部场电位活动。Neuro-stack 具有高度灵活和可定制的刺激能力,为研究疾病的神经生理基础、开发改进的响应性神经调节疗法、探索人类自然行为期间的大脑功能以及跨物种连接数十年的神经科学发现提供了机会。
用于估计嘈杂的中间量子量子(NISQ)ERA设备上的分子基态性能,基于变异的量子本特征(VQE)算法的算法已获得流行,因为它们相对较低的电路深度和对噪声的弹性。9,10这导致了一系列成功的演示,涉及当今量子设备和模拟器上小分子的分子基态能量的计算。4,6,11 - 22然而,仅对分子基态能量的估计不足以描述许多有趣的化学过程,这些化学过程涉及某种形式的电子激发。23,例如,化学现象的准确建模,例如光化学反应,涉及过渡金属复合物,光合作用,太阳能电池操作等的催化过程等。需要对分子地面和激发态进行精确模拟。这种系统的电子激发态通常密切相关,因此需要使用复杂的量子化学理论来准确描述。在过去的几十年中,在这方面已经开发了许多方法。24 - 32最初由Stanton和Bartlett开发的运动方程耦合群集(EOM-CC)26方法是一个流行的示例,通常用于计算分子激发剂,例如激发能量
用于估计嘈杂的中间量子量子(NISQ)ERA设备上的分子基态性能,基于变异的量子本特征(VQE)算法的算法已获得流行,因为它们相对较低的电路深度和对噪声的弹性。9,10这导致了一系列成功的演示,涉及当今量子设备和模拟器上小分子的分子基态能量的计算。4,6,11 - 22然而,仅对分子基态能量的估计不足以描述许多有趣的化学过程,这些化学过程涉及某种形式的电子激发。23,例如,化学现象的准确建模,例如光化学反应,涉及过渡金属复合物,光合作用,太阳能电池操作等的催化过程等。需要对分子地面和激发态进行精确模拟。这种系统的电子激发态通常密切相关,因此需要使用复杂的量子化学理论来准确描述。在过去的几十年中,在这方面已经开发了许多方法。24 - 32最初由Stanton和Bartlett开发的运动方程耦合群集(EOM-CC)26方法是一个流行的示例,通常用于计算分子激发剂,例如激发能量
a 蓝色字体显示不确定的分类。b 红色字体显示假阳性分类。缩写:BFP,脑指纹;IP,存在真实信息;IP C ,脑指纹分类为存在信息;IA,不存在真实信息;IA C ,脑指纹分类为不存在信息;IND,脑指纹分类为不确定。
炎症性肠病(IBD)是一种影响胃肠道的慢性炎症性疾病。它威胁人类健康,并给社会带来很大的经济负担(Nakase等人2021),在过去的几十年中,发病率和患病率一直在增加(Nambu等人2022)。越来越多的研究表明,功能失调的免疫反应是肠道炎症和组织损伤的关键驱动力(Neurath 2019; Jiang等人。2022)。尽管IBD在肠道和气体界面中表现出来,但近年来,肠外表现(EIM)引起了很大的关注,这严重影响了IBD患者(Malik和Aurelio 2022)患者的生活质量。最近,作为EIM的牙周炎一直是一个问题(Malik和Aurelio 2022)。牙周炎是一种普遍且复杂的免疫感染性疾病,会引起牙周组织不可逆的炎症和牙齿结构的破坏(Abusleme等人2021)。破坏的宿主免疫稳态将促进牙周炎的发生和发展(Huang等人2021; Xu等。2021)。最近的研究表明,IBD患者表现出更严重的牙周炎(Schmidt等人2018)。牙周炎可能会在某些IBD患者中与临床症状较差相关(Imai等人2021)。研究