摘要 :传统脑机系统复杂、昂贵,情绪分类算法缺乏对脑电信号不同通道间内在关系的表征,准确率还有提升空间。为降低脑电研究门槛,充分利用多通道脑电信号中蕴含的丰富信息,提出并实现一个简便易用的脑机系统,用于快乐、忧伤、悲痛、平静四种情绪的分类。该系统采用卷积注意机制与完全预激活残差块的融合,即基于注意卷积的预激活残差网络(ACPA-ResNet)。在硬件采集和预处理阶段,我们采用ADS1299集成芯片作为模拟前端,利用ESP32单片机对脑电信号进行初步处理。数据通过UDP协议无线传输到PC机进行进一步的预处理。在情绪分析阶段,ACPA-ResNet能够自动从脑电信号中提取和学习特征,通过学习时频域特征实现对情绪状态的准确分类。ACPA-ResNet在残差网络的基础上引入注意力机制,自适应地为每个通道分配不同的权重,使其在空间和通道维度上关注更有意义的脑电信号,同时避免了深度网络架构带来的梯度弥散和爆炸问题。经过对16名受试者的测试,系统实现了稳定的脑电信号采集和传输。新网络显著提高了情绪识别的准确率,平均情绪分类准确率达到95.1%。
摘要 本研究旨在利用机器学习技术和便携式无线传感设备 EPOC+,对情绪识别中使用不同长度的时间窗口 (TW) 进行比较分析。本研究以个体在情绪刺激过程中提取的脑电信号数据集为基础,以熵为特征,评估不同分类器模型在不同 TW 长度下的性能。进行了两种类型的分析:被试间和被试内。在五种监督分类器模型中比较了准确率、曲线下面积和 Cohen's Kappa 系数等性能指标:K最近邻 (KNN)、支持向量机 (SVM)、逻辑回归 (LR)、随机森林 (RF) 和决策树 (DT)。结果表明,在两种分析中,所有五种模型在 2 至 15 秒的 TW 中均表现出较高的性能,其中 10 秒 TW 在被试间分析中尤为突出,5 秒 TW 在被试内分析中尤为突出;此外,不建议使用超过20秒的TW。这些结果为研究情绪时EEG信号分析中选择TW提供了有价值的指导。
摘要 — 双谱是频域分析中一种革命性的工具,它通过捕获频率分量之间的关键相位信息,超越了通常的功率谱。在我们的创新研究中,我们利用双谱分析和解码复杂的抓握动作,收集了来自五名人类受试者的脑电图数据。我们用三个分类器对这些数据进行了测试,重点关注幅度和相位相关特征。结果突出了双谱深入研究神经活动和区分各种抓握动作的惊人能力,其中支持向量机 (SVM) 分类器表现出色。在二元分类中,它在识别强力抓握方面实现了惊人的 97% 的准确率,而在更复杂的多类任务中,它保持了令人印象深刻的 94.93% 的准确率。这一发现不仅强调了双谱的分析能力,还展示了 SVM 在分类方面的卓越能力,为我们理解运动和神经动力学打开了新的大门。索引术语 —EEG(脑电图)、双谱、交叉双谱、握力解码和机器学习。
睡眠阶段分类是研究人类生活质量的新课题之一,因为它在养成健康的生活方式方面起着至关重要的作用。睡眠异常变化或缺乏正常睡眠可能导致不同的疾病,如心脏相关疾病、糖尿病和肥胖症。一般来说,睡眠分期分析可以使用脑电图 (EEG) 信号进行。本研究提出了一种基于卷积神经网络 (CNN) 的睡眠阶段分类方法,使用六个通道采集的 EEG 信号将其转换为时频分析图像。所提出的方法包括三个主要步骤:(i) 将 EEG 信号分割成 30 秒长的时期,(ii) 使用时频分析将时期转换为 2D 表示,以及 (iii) 将 2D 时频分析输入到 2D CNN。结果表明,所提出的方法是稳健的,对通道 C4-A1 实现了 99.39% 的非常高的准确率。所有其他通道的准确率均超过 98.5%,这表明任何通道都可用于高精度的睡眠阶段分类。所提出的方法在总体准确率或单通道准确率方面优于文献中的方法。它有望为医生,尤其是神经科医生带来巨大益处;为他们提供一种新的强大工具来支持睡眠相关疾病的临床诊断。
摘要 轮椅因其舒适性和机动性而成为运动障碍人士中最受欢迎的辅助技术 (AT) 之一。手指有问题的人可能会发现使用传统的操纵杆控制方法操作轮椅很困难。因此,在本研究中,开发了一种基于手势的控制方法来操作电动轮椅 (EPW)。本研究选择了基于舒适度的手部位置来确定停止动作。还进行了额外的探索以研究四种手势识别方法:线性回归 (LR)、正则化线性回归 (RLR)、决策树 (DT) 和多类支持向量机 (MC-SVM)。前两种方法 LR 和 RLR 的准确率分别为 94.85% 和 95.88%,但每个新用户都必须接受培训。为了克服这个限制,本研究探索了两种独立于用户的分类方法:MC-SVM 和 DT。这些方法有效地解决了手指依赖性问题,并在识别不同用户的手势方面取得了显著的成功。MC-SVM 的准确率和准确度约为 99.05%,DT 的准确率和准确度约为 97.77%。所有六名参与者都成功控制了 EPW,没有发生任何碰撞。根据实验结果,所提出的方法具有很高的准确性,并且可以解决手指依赖性问题。
信号处理技术的最新进展,包括拓扑数据分析 (TDA),为脑电信号分析提供了一种强大的方法。TDA 利用数学领域拓扑的思想,并将这些思想应用于现实世界信号的分析 [5]。广义上讲,TDA 使我们能够利用数据固有的拓扑和几何结构,并利用这些结构研究阻塞性睡眠呼吸暂停 (OSA) 阳性和 OSA 阴性患者的脑电信号之间的根本差异。在本文中,我们介绍了 TDA 技术,该技术允许仅使用脑电信号识别 OSA。这项工作的关键假设是 OSA 阳性患者的大脑连接网络具有与 OSA 阴性患者的大脑连接网络根本不同的拓扑结构。现有的用于识别儿童 OSA 的技术涉及整夜睡眠研究,称为多导睡眠图 (PSG)。这要求患者要么去医疗机构的睡眠实验室,要么在家安排夜间睡眠测试,这两项工作都可能需要几个月的时间才能安排好。
脑电图 (EEG) 是一种著名的非侵入性神经成像技术,可以洞察大脑功能。不幸的是,EEG 数据在不同受试者之间表现出高度的噪声和变异性,阻碍了可推广的信号提取。因此,EEG 分析的一个关键目标是提取潜在的神经激活(内容)以及考虑个体受试者的变异性(风格)。我们假设,在任务和受试者之间转换 EEG 信号的能力需要提取考虑内容和风格的潜在表示。受语音转换技术最新进展的启发,我们提出了一种新颖的对比分裂潜在排列自动编码器 (CSLP-AE) 框架,可直接优化 EEG 转换。重要的是,使用对比学习来引导潜在表示,以促进潜在分裂明确地表示主题(风格)和任务(内容)。我们将 CSLP-AE 与传统的监督、无监督 (AE) 和自监督 (对比学习) 训练进行了对比,发现所提出的方法提供了对主体和任务的良好可推广表征。重要的是,该程序还支持未见过的主体之间的零样本转换。虽然本研究仅考虑 EEG 的转换,但所提出的 CSLP-AE 为信号转换和提取内容 (任务激活) 和风格 (主体变异性) 组件提供了一个通用框架,可用于对生物信号进行建模和分析。
摘要:脑机接口(BCI)利用神经活动作为控制信号,实现人脑与外部设备之间的直接通信,通过脑电图(EEG)捕捉大脑产生的电信号,将其转化为反映用户行为的神经意图,正确解码神经意图才能实现对外部设备的控制。基于强化学习的BCI增强解码器仅基于环境的反馈信号(奖励)完成任务,构建了从神经意图到适应变化环境的动作的动态映射通用框架。但使用传统的强化学习方法存在维数灾难、泛化能力差等挑战。因此,本文利用深度强化学习构建解码器以正确解码EEG信号,通过实验证明其可行性,并在具有高动态特性的运动成像(MI)EEG数据信号上展示其更强的泛化能力。
基于脑电信号和解码大脑活动的病理诊断对于理解神经系统疾病具有重要意义。随着人工智能方法和机器学习技术的进步,准确的数据驱动诊断和有效治疗的潜力显着增长。然而,将机器学习算法应用于现实世界的数据集在多个层面上提出了不同的挑战。标记数据的稀缺性,特别是在低水平场景中,由于招募成本高,真实患者队列的可用性有限,凸显了扩展和迁移学习技术的重要性。在本研究中,我们探索了一个现实世界的病理分类任务,以突出数据和模型扩展以及跨数据集知识转移的有效性。因此,我们观察到通过数据扩展可以获得不同的性能改进,这表明需要仔细评估和标记。此外,我们确定了可能的负转移挑战,并强调了一些关键成分对克服分布偏移和潜在的虚假相关性并实现正转移的重要性。当可用的标记数据量较少时,通过使用源数据集 (TUAB) 中的知识,我们发现目标模型在目标 (NMT) 数据集上的性能有所提高。我们的研究结果表明,小型通用模型(例如 ShallowNet)在单个数据集上表现良好,而大型模型(例如 TCN)在从大型多样化数据集进行迁移和学习方面表现更好。
摘要:大气总水蒸气含量 (TWVC) 会影响气候变化、天气模式和无线电信号传播。全球导航卫星系统 (GNSS) 等最新技术用于测量 TWVC,但精度、时间分辨率或空间覆盖范围均有所降低。本研究证明了使用扩频 (SS) 无线电信号和低地球轨道 (LEO) 卫星上的软件定义无线电 (SDR) 技术预测、绘制和测量 TWVC 的可行性。提出了一种来自小型卫星星座的卫星间链路 (ISL) 通信网络,以实现 TWVC 的三维 (3D) 映射。然而,LEO 卫星的 TWVC 计算包含电离层总电子含量 (TEC) 的贡献。TWVC 和 TEC 贡献是根据信号传播时间延迟和卫星在轨道上的位置确定的。由于 TEC 与 TWVC 不同,依赖于频率,因此已经实施了频率重构算法来区分 TWVC。这项研究的新颖之处在于使用时间戳来推断时间延迟、从星座设置中独特地推导 TWVC、使用算法实时远程调谐频率以及使用 SDR 进行 ISL 演示。这项任务可能有助于大气科学,测量结果可以纳入全球大气数据库,用于气候和天气预报模型。