基于脑电信号和解码大脑活动的病理诊断对于理解神经系统疾病具有重要意义。随着人工智能方法和机器学习技术的进步,准确的数据驱动诊断和有效治疗的潜力显着增长。然而,将机器学习算法应用于现实世界的数据集在多个层面上提出了不同的挑战。标记数据的稀缺性,特别是在低水平场景中,由于招募成本高,真实患者队列的可用性有限,凸显了扩展和迁移学习技术的重要性。在本研究中,我们探索了一个现实世界的病理分类任务,以突出数据和模型扩展以及跨数据集知识转移的有效性。因此,我们观察到通过数据扩展可以获得不同的性能改进,这表明需要仔细评估和标记。此外,我们确定了可能的负转移挑战,并强调了一些关键成分对克服分布偏移和潜在的虚假相关性并实现正转移的重要性。当可用的标记数据量较少时,通过使用源数据集 (TUAB) 中的知识,我们发现目标模型在目标 (NMT) 数据集上的性能有所提高。我们的研究结果表明,小型通用模型(例如 ShallowNet)在单个数据集上表现良好,而大型模型(例如 TCN)在从大型多样化数据集进行迁移和学习方面表现更好。
主要关键词