使用合作方法合成二氧化锰(MNO2)纳米颗粒,其结构,光学和电化学性质被系统地表征。透射电子显微镜(TEM)表明,MNO2纳米颗粒表现出明确的形态,尺寸分布均匀。X射线衍射(XRD)分析证实了材料和拉曼光谱的晶体性质进一步支持MNO2相的鉴定。傅立叶转换红外(FTIR)光谱证明了特征官能团的存在,而紫外线可见(UV-VIS)光谱估计的光条间隙为2.9 eV。热重分析(TGA)强调了MNO2的热稳定性,观察到最小的体重减轻高达800ºC。使用环状伏安法(CV)和电化学阻抗光谱(EIS)评估电化学性能,以10 mV/s的扫描速率揭示了236.04 f/g的高特异性电容。这些结果表明,MNO2纳米颗粒具有出色的电化学性能,使其成为能源储能应用的有前途的候选人。关键字:锰二氧化碳,共同沉积法,电化学性能,储能应用。
埃及吉萨 12578,十月六日城,十月花园,泽维尔科技城 1 号。 2 国家研究中心 (NRC) 应用有机化学系,Dokki, 12622,吉萨,埃及; 3 巴黎萨克雷大学、法国国立科学研究院、奥赛分子化学与材料研究所 (ICMMO)、欧洲化学与物理联合会 (ECBB)、法国奥赛 Rue du Doyen Georges Poitou 91400 420 号楼
结果:在碱性样品中,在 Prony 热液条件下(pH 10,30–75 °C)运行 6 天的 15 个反应器中均未观察到电流增加。相比之下,在 Panarea 热液条件下(pH 4.5–7,75 °C)运行的反应器中平均观察到 6 倍的增加。多因素分析显示,这些反应器的整体生物电化学性能使它们有别于所有其他 Panarea 和 Prony 条件,这不仅是因为它们具有更高的电流产量,还因为它们具有古细菌丰度(通过 qPCR 测量)。大多数反应器产生有机酸(6 天内高达 2.9 mM)。尽管如此,库仑效率表明这可能是由于培养基中微量酵母提取物的(电)发酵而不是 CO 2 固定。最后,通过 16S 宏条形码和排序方法描述了微生物群落,并确定了潜在的电营养类群。在帕纳雷亚反应堆中,较高的生长与一些细菌属有关,主要是芽孢杆菌和假交替单胞菌,其中前者在较高温度下(55°C 和 75°C)生长。在重现普罗尼湾热液条件的反应堆中,已知的兼性甲基营养菌,如鞘氨醇单胞菌和甲基杆菌占主导地位,似乎消耗甲酸盐(作为碳源),但不消耗来自阴极的电子。
随着电化学阻抗谱 (EIS) 社区越来越多地采用 impedance.py(Murbach 等人,2020 年)作为开源软件工具,nleis.py 是 impedance.py 的一个工具箱,旨在提供一种易于访问的工具来执行二次谐波非线性 EIS (2nd-NLEIS) 分析,并能够在未来扩展到更高的谐波分析。该工具箱在设计时考虑了 impedance.py,以最大限度地缩短用户的学习曲线。它继承了 impedance.py 的基本功能,引入了成对的线性和二次谐波非线性电路元件,并能够同时分析 EIS 和 2nd-NLEIS。使用此工具箱,可以选择单独分析 EIS 或 2nd-NLEIS 光谱,或者使用 impedance.py 工作流程同时对线性和非线性阻抗数据进行参数估计。最终,随着采用的增长,nleis.py 工具箱将被集成到impedance.py中,同时保留nleis.py的独立版本作为平台,以便在该领域成熟时开发高级功能。
电致化学发光,也称为电化学发光 (ECL),由于其高灵敏度、极宽的动态范围以及对光发射空间和时间的出色控制,在各个分析领域引起了广泛关注。ECL 在体外检测中取得的巨大成功源于其将生物识别元素的选择性与 ECL 技术的灵敏度和可控性相结合的优势。ECL 被广泛应用于超灵敏检测生物分子的强大分析技术。在本综述中,我们总结了 ECL 在免疫传感方面的最新发展和应用。在此,我们介绍了传感方案和在不同领域的应用,例如生物标志物检测、基于珠子的检测、细菌和细胞分析,并对 ECL 免疫传感的新发展进行了展望。特别是,我们重点介绍了用于临床样本分析和医学诊断的基于 ECL 的传感分析以及为此目的而开发的免疫传感器。
关键词:能源材料、纳米级效应、高 k 电介质、隧道传导、电化学储能。缩写:(第一页脚注) ALD:原子层沉积 Si NWs:硅纳米线 Si NTs:硅纳米树 Al@SiNWs:氧化铝涂层硅纳米线 Al@SiNTs:氧化铝涂层硅纳米树 3 纳米 Al@SiNWs:3 纳米氧化铝涂层硅纳米线
Seyyed Mohsen Beladi-Mousavi、Gerardo Salinas、Nikolas Antonatos、Vlastimil Mazanek、Patrick Garrigue 等人。通过独立 2D 反应层中的双极电化学微调还原氧化石墨烯的功能。Carbon,2022 年,191,第 439-447 页。�10.1016/j.carbon.2022.02.010�。�hal-03635847�
突触可塑性对于模仿感觉知觉、学习、记忆和遗忘具有基本意义。[1 − 3] 它通过控制突触前事件的发生来加强或削弱神经元间的连接,以突触后电流 (PSC) 为输出,从而实现对过程的定量监测。[4,5] 例如,通过重复的突触前刺激可以实现促进,从而增强超快突触传递和记忆巩固。[6] 相反,相反的过程是抑制,它代表一种抑制操作,避免过度兴奋并维持神经网络的稳定性。 [7] 由于突触可塑性在人工智能中起着促进人机交互的关键作用,人们投入了大量精力利用有机共轭材料模拟生物突触,旨在编码和放大信息。 [8 − 16] 特别是电解质门控有机材料在通道中结合了电荷传输和电化学掺杂, [17 − 19] 因此它们代表了赋予突触装置独特电性能的多功能平台。 [20 − 23] 将它们集成到光电装置中的努力导致了有机电化学晶体管 (OECT) 的发展。 [19] 作为电子突触,OECT 中离子掺杂和去掺杂的动力学已经被开发来模拟促进和抑制行为。 [10,20] 作为一种模型系统,电解质门控的 PEDOT:PSS 因可移动离子和聚合物骨架之间的可逆电化学相互作用而受到研究。[9,11] 在静电门控下,移动阴离子被驱动掺杂通道,增加通道电导率,从而产生促进作用。通过反转静电门控的极性,渗透到通道中的阴离子被提取出来,从而有可能按照抑制过程恢复到原始状态。通过掌握这种极性诱导的开关,已经实现了各种具有复杂功能的有机突触。[15] 在使用水性电解质[9,10,16]离子凝胶[14,17,23]和聚电解质门控[12]时,它们同时以电子双层 (EDL) 的形成为特征
人们对电化学储能材料和技术的关注度日益提升,为该领域带来了大批新研究人员,这无疑是迈向进步的第一步。[1] 新研究人员的多元背景和独特视角可以启发和催化传统观念的改变,从而为原本停滞不前的领域带来突破。但必须注意的是,新研究人员的涌入往往是一把双刃剑——任何科学领域的新手通常都不了解基础科学、惯例和定义该领域标准的方法,也不了解该领域发展到这一阶段的历史。通常,这会导致该领域的专家完全否定新研究人员的工作,很少考虑这些工作背后可能存在的科学价值,仅仅是因为研究人员对数据解释不当或计算方法滥用。电化学储能材料领域也不例外。尤其臭名昭著的例子包括但不限于镍氢氧化物、钴氧化物和镍钴氧化物/氢氧化物。[2] 每年都会发表大量关于这些材料的研究,报告的比电容值为每克数千法拉,但由于作者解释、分析和报告数据的方式,这些值被忽略了。这绝不是一个新问题,而且尚未解决。为了确保我们领域的建设性进展,我们想再次提请研究人员——以及将评判他们工作科学基础的审稿人——注意正确解释和报告储能材料和设备数据的重要性。在以下章节中,我们将讨论研究人员在报告储能材料性能指标时常犯的错误,以及如何正确识别所研究的特定电极材料的电化学特性可以消除这些错误。