Det-Tronics 系列电化学气体传感器旨在持续监测大气中是否存在潜在危险气体泄漏或氧气耗尽。有多种型号可用于检测各种浓度范围内的各种气体类型。传感器外壳内的变送器电路可产生与目标气体浓度成比例的 4 至 20 毫安输出信号。这些传感器与 R8471 系列气体控制器、Infiniti 变送器、Eagle 数字通信单元 (DCU) 或任何其他能够监测 4 至 20 毫安直流输入并提供校准功能的监测设备兼容。传感器设计用于危险环境,并可用作防爆或本质安全设备。
航空电子设备的一般组件,以及航空电子设备中使用的印刷电路板 (PCB) 的紧凑拓扑。电子设备,尤其是重要设备的任何复杂化都会导致对可靠性的要求增加。鉴于飞机设备几乎一直在极端条件下运行,即使是最小的故障概率也是不可接受的。这就是为什么航空电子设备的物理可靠性如此重要的原因。显著降低航空电子设备物理可靠性的因素之一是电化学迁移。电化学迁移可能导致航空电子设备运行失败,甚至完全失效,甚至导致飞机起火。现在对电化学迁移的研究很少。仅确定了导致电化学迁移的因素和电化学迁移的后果,现有的解决方法要么无效,要么会显著增加飞机设备的重量和成本,从而使其使用变得不切实际。本文介绍了电化学迁移运动学、其发生的后果以及发生方式的实验研究
如果要合理设计高效、明亮的发射技术,理解“效率滚降”(即发射效率随电流增加而下降)至关重要。新兴的发光电化学电池 (LEC) 可以通过环境空气打印以成本和能源高效的方式制造,这得益于 pn 结掺杂结构的原位形成。然而,这种原位掺杂转变给有意义的效率分析带来了挑战。本文介绍了一种分离和量化主要 LEC 损耗因素(特别是出耦合效率和激子猝灭)的方法。具体而言,测得常见单线态激子发射 LEC 中发射 pn 结的位置随电流的增加而显著移动,并量化这种移动对外耦合效率的影响。进一步验证了 LEC 特有的高电化学掺杂浓度在低驱动电流密度下就已经使单重态极化子猝灭 (SPQ) 变得显著,而且由于 pn 结区域中极化子密度的增加,SPQ 还会随着电流的增加而超线性增加。这导致 SPQ 在相关电流密度下主导单重态-单重态猝灭,并且显著有助于效率下降。这种解释 LEC 效率下降的方法有助于合理实现在高亮度下高效的全印刷 LEC 设备。
GraphDiyne(GDY)的研究在出生后的头十年中经历了快速增长。作为一种新的二维原子晶体,GDY具有由SP和SP 2杂交碳原子组成的独特结构,并且对科学家表现出许多前所未有的内在特性。由于GDY的固有特征,在广泛的研究领域中发现了一些新现象和特性。gdy在基本和应用科学方面取得了重大突破,形成了创新的科学概念,并取得了巨大的成就。在这些领域中,电化学能源存储和转换是基本应用研究的两个重要且令人印象深刻的领域。本综述着重于将GDY用作电化学能源存储和转换的高级电化学接口。它首先引入了GDY作为电化学接口的优势和固有的兼容性。然后,GDY在电化学存储和转换方面的最新成就得到了评论,我们可以从中欣赏GDY作为交替和创新电化学界面的重要材料的固有优势。最后,讨论了对电化学能源存储和转换的GDY界面的挑战和进一步观点的新见解,旨在促使深入研究及其在实际应用中的表现。
1土耳其Izmir 35100的EGE大学药学学院分析化学系; 91180001152@ogrenci.ege.ege.edu.tr 2兰开斯特大学兰开斯特大学卫生与医学学院生物医学与生命科学系,英国LA1 4YQ; tp471@cam.ac.uk(T.P. ); n.copeland@lancaster.ac.uk(N.A.C。) 3英国兰开斯特LA1 4YB兰开斯特大学科学技术学院化学系; j.g.hardy@lancaster.ac.uk(J.G.H. ); mfilak@gtu.edu.tr(m.f.) 4材料科学研究所,兰开斯特大学,兰开斯特LA1 4YB,英国5号,盖布兹技术大学,盖布兹41400,土耳其6化学工程系,伊兹米尔技术学院,izmir技术学院,izmir 35430,土耳其; atike.yardimci@usak.edu.tr(A.I.Y。 ); selahattinyilmaz@iyte.edu.tr(s.y。) 7医学院,哈塞特普大学,安卡拉06100,土耳其; fahreddinpalaz@hacettepe.edu.tr 8 East University,East University,Lefko≥SA99138,土耳其 *通信 *通信:pinar.kara@ege.edu.tr(p.k. ); mehmet.ozsoz@neu.edu.tr(M.O.) †这些作者为这项工作做出了同样的贡献。1土耳其Izmir 35100的EGE大学药学学院分析化学系; 91180001152@ogrenci.ege.ege.edu.tr 2兰开斯特大学兰开斯特大学卫生与医学学院生物医学与生命科学系,英国LA1 4YQ; tp471@cam.ac.uk(T.P.); n.copeland@lancaster.ac.uk(N.A.C。)3英国兰开斯特LA1 4YB兰开斯特大学科学技术学院化学系; j.g.hardy@lancaster.ac.uk(J.G.H. ); mfilak@gtu.edu.tr(m.f.) 4材料科学研究所,兰开斯特大学,兰开斯特LA1 4YB,英国5号,盖布兹技术大学,盖布兹41400,土耳其6化学工程系,伊兹米尔技术学院,izmir技术学院,izmir 35430,土耳其; atike.yardimci@usak.edu.tr(A.I.Y。 ); selahattinyilmaz@iyte.edu.tr(s.y。) 7医学院,哈塞特普大学,安卡拉06100,土耳其; fahreddinpalaz@hacettepe.edu.tr 8 East University,East University,Lefko≥SA99138,土耳其 *通信 *通信:pinar.kara@ege.edu.tr(p.k. ); mehmet.ozsoz@neu.edu.tr(M.O.) †这些作者为这项工作做出了同样的贡献。3英国兰开斯特LA1 4YB兰开斯特大学科学技术学院化学系; j.g.hardy@lancaster.ac.uk(J.G.H.); mfilak@gtu.edu.tr(m.f.)4材料科学研究所,兰开斯特大学,兰开斯特LA1 4YB,英国5号,盖布兹技术大学,盖布兹41400,土耳其6化学工程系,伊兹米尔技术学院,izmir技术学院,izmir 35430,土耳其; atike.yardimci@usak.edu.tr(A.I.Y。 ); selahattinyilmaz@iyte.edu.tr(s.y。) 7医学院,哈塞特普大学,安卡拉06100,土耳其; fahreddinpalaz@hacettepe.edu.tr 8 East University,East University,Lefko≥SA99138,土耳其 *通信 *通信:pinar.kara@ege.edu.tr(p.k. ); mehmet.ozsoz@neu.edu.tr(M.O.) †这些作者为这项工作做出了同样的贡献。4材料科学研究所,兰开斯特大学,兰开斯特LA1 4YB,英国5号,盖布兹技术大学,盖布兹41400,土耳其6化学工程系,伊兹米尔技术学院,izmir技术学院,izmir 35430,土耳其; atike.yardimci@usak.edu.tr(A.I.Y。); selahattinyilmaz@iyte.edu.tr(s.y。)7医学院,哈塞特普大学,安卡拉06100,土耳其; fahreddinpalaz@hacettepe.edu.tr 8 East University,East University,Lefko≥SA99138,土耳其 *通信 *通信:pinar.kara@ege.edu.tr(p.k.); mehmet.ozsoz@neu.edu.tr(M.O.)†这些作者为这项工作做出了同样的贡献。
摘要:氨是肥料的重要前体,也是潜在的无碳能载体。如今,氨已通过Haber-Bosch工艺合成,这是一个资本和能源密集型过程,具有巨大的CO 2足迹。 因此,需要使用可再生电力从N 2和H 2 O产生可持续和分散的氨的替代过程。 实现此类过程的关键挑战是N 2键的有效激活以及对NH 3的选择性。 在这项贡献中,我们报告了一种使用血浆激活的质子来从氮和水中产生可持续氨的全电动方法,该血浆激活的质子导致固体氧化物电解核。 由阳极上的水氧化产生的氢种通过质子导电膜转运到阴极,它们与血浆激活的氮反应于氨气。 氨的生产率和法拉达型官能率分别达到26.8 nmol的NH 3 s -1 cm - 2和88%。 a如今,氨已通过Haber-Bosch工艺合成,这是一个资本和能源密集型过程,具有巨大的CO 2足迹。因此,需要使用可再生电力从N 2和H 2 O产生可持续和分散的氨的替代过程。实现此类过程的关键挑战是N 2键的有效激活以及对NH 3的选择性。在这项贡献中,我们报告了一种使用血浆激活的质子来从氮和水中产生可持续氨的全电动方法,该血浆激活的质子导致固体氧化物电解核。由阳极上的水氧化产生的氢种通过质子导电膜转运到阴极,它们与血浆激活的氮反应于氨气。氨的生产率和法拉达型官能率分别达到26.8 nmol的NH 3 s -1 cm - 2和88%。a
“本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。”
li,X.,li,J.,Yun,J.,Wu,A.,Gao,C。&Lee,S.W。(2022)。连续的热再生电化学系统,用于将低级热量转换为电力。Nano Energy,101,107547-。https://dx.doi.org/10.1016/j.nanoen.2022.107547https://dx.doi.org/10.1016/j.nanoen.2022.107547
响应对可持续石墨烯合成方法不断增长的需求,传统上以恶劣的条件和延长的处理为特征,我们提出了一种创新的方法。在这里,在温和的血浆条件下,石墨烯是利用自然资源的Melaleuca Alternifolia合成的。此方法不仅与对环保过程的需求越来越多,而且具有效率,在几秒钟内产生石墨烯。我们的研究采用了各种分析技术,包括拉曼光谱副本,证实了石墨烯的成功合成。光谱分析中鉴定出的独特峰验证了产生的石墨烯材料的高质量。除了合成之外,我们的研究还深入研究了合成石墨烯的电化学特性。对实际生物分子进行严格的测试揭示了增强的电流峰,强调了石墨烯在电化学感测范围中的潜在应用。这项工作有助于推进可持续和有效的石墨烯合成,同时探索其实用应用的有希望的特性。
(3)MA,R。; Lin,G。;周,Y。刘,Q。;张,T。; Shan,G。; Yang,M。;王,J。对无金属碳电催化剂的氧还原机制的综述。NPJ Comput Mater 2019,5(1),78。https://doi.org/10.1038/s41524-019-019-0210-3。