摘要:氨是肥料的重要前体,也是潜在的无碳能载体。如今,氨已通过Haber-Bosch工艺合成,这是一个资本和能源密集型过程,具有巨大的CO 2足迹。 因此,需要使用可再生电力从N 2和H 2 O产生可持续和分散的氨的替代过程。 实现此类过程的关键挑战是N 2键的有效激活以及对NH 3的选择性。 在这项贡献中,我们报告了一种使用血浆激活的质子来从氮和水中产生可持续氨的全电动方法,该血浆激活的质子导致固体氧化物电解核。 由阳极上的水氧化产生的氢种通过质子导电膜转运到阴极,它们与血浆激活的氮反应于氨气。 氨的生产率和法拉达型官能率分别达到26.8 nmol的NH 3 s -1 cm - 2和88%。 a如今,氨已通过Haber-Bosch工艺合成,这是一个资本和能源密集型过程,具有巨大的CO 2足迹。因此,需要使用可再生电力从N 2和H 2 O产生可持续和分散的氨的替代过程。实现此类过程的关键挑战是N 2键的有效激活以及对NH 3的选择性。在这项贡献中,我们报告了一种使用血浆激活的质子来从氮和水中产生可持续氨的全电动方法,该血浆激活的质子导致固体氧化物电解核。由阳极上的水氧化产生的氢种通过质子导电膜转运到阴极,它们与血浆激活的氮反应于氨气。氨的生产率和法拉达型官能率分别达到26.8 nmol的NH 3 s -1 cm - 2和88%。a