西弗吉尼亚州摩根敦——高温电子设备的缺乏对美国尚未开发的深层天然气资源的开发构成了障碍。墨西哥湾、落基山脉、中部大陆地区和阿巴拉契亚盆地等地的深层或致密地层、页岩和煤层中蕴藏着大量非常规天然气。这些储量中,相当一部分位于 15,000 英尺及更深的储层中。尽管国内天然气生产商已开始开发这种资源,但在将大量储量归类为经济可采储量之前,仍然存在经济和技术障碍。深层天然气钻探是在恶劣的环境中进行的。压力可能超过 20,000 psi,温度很容易超过 200 摄氏度。随着钻头到达的深度越来越深,监测井下条件也变得相应重要但困难。此外,由于传统的现成电子元件无法适应高温条件,因此必须开发新技术。
执行摘要 军事能力的使用寿命大大超过实现关键功能的商用电子系统的设计寿命。随着电子行业继续投资于定期增加功能并减小物理尺寸,过时也与不可避免的物理现象和影响有关,这些现象和影响会降低小型化半导体技术和电子系统的可靠性,无论是在使用还是存储过程中。从设计上讲,电子技术在商业保修期之外几乎没有可靠性裕度。高度小型化的电子设备越来越多地出现间歇性故障或其他违反直觉的行为,因为组件会退化,而不是表现出明显的故障。系统可靠性也会随着系统复杂性而降低,由于软件难以正确运行,软件仍然是电子系统整个生命周期可靠性的主要限制因素。由于需要重新构建软件才能通过多核处理器获得所需的性能,多核处理器的商业趋势将加剧这一问题。过时和可靠性相互关联的问题影响着所有商用电子系统。这些担忧的范围很广,从使用尖端技术的自然影响(不成熟的技术很少高度可靠)到计划报废,计划报废是指故意将部件设计为只能在保修期内使用,客户有义务再次购买。无论出于何种原因,国防部都要承担维持可行能力的成本增加的影响,因为需要实施重大系统更新或更换,以确保大多数依赖电子系统的军事能力的长期可行性和可负担性。简单的反应,如淘汰旧能力和购买新能力,只会放大影响,因为报废速度可能会加快,保修期不太可能延长,制造商继续在保修期之外降低可靠性裕度。本报告调查了一些相互关联的问题,包括基础电子、电子系统可靠性、报废、软件可靠性、这些对军事应用的典型长使用寿命的影响、传统后勤反应(例如最后一次购买)的局限性,以及对这些担忧的一些新反应。技术重点略微偏向飞机上的嵌入式计算系统,但讨论适用于任何依赖某种电子系统的军事能力。目的是为讨论潜在的协调响应提供一些基础,并指出其中涉及许多技术和非技术因素。当前的国防能力计划 (DCP) 包括几个旨在解决过时问题的项目,其中相当一部分特别提到了与电子产品过时或可靠性相关的担忧。商业趋势可能会增加这些担忧对能力开发过程的影响。
– ATR-2023-01981“使用 COTS EEE 零件和单元扩展空间设计选项的采购考虑因素” • 提供经常使用的合同语言示例,这些语言可能会无意中阻止投标人竞标 COTS 解决方案,并提供替代措辞的建议 – ATR-2023-01935“使用 COTS 扩展空间设计选项” • 为评估和管理与在航天器中使用 COTS 电子设备相关的风险提供指导。它确定了常见的最佳实践和各种技术措施(例如,架构选择、测试和分析)以通过与电路相关的方式管理 COTS 风险。 • 流程图支持针对特定计划的、基于风险的决策,以管理 COTS 风险
电子产品的辐射敏感性一直是探测瞬态或时间累积现象中的电气特性。随着电子芯片或系统的尺寸和复杂性增加,检测最脆弱的区域变得更加耗时和具有挑战性。在这项研究中,我们假设局部机械应力如果与电气敏感区域重叠,会使电子设备更容易受到辐射。因此,我们开发了一种间接技术来映射机械和电气热点,以识别运算放大器 AD844 对电离辐射的辐射敏感区域。使用脉冲热相分析通过锁定热成像测量机械敏感性,并使用电偏置来识别电气相关区域。构建了电气和机械敏感性的综合评分,作为电离辐射敏感性的指标。与文献相比,实验结果表明新技术在快速检测辐射脆弱区域方面是有效的。这些发现对于较大的系统可能很有吸引力,因为传统的分析需要多花两到三个数量级的时间才能完成。然而,该技术的间接性质使研究更加近似,需要更多的一致性和验证工作。
X2F,位于Loveland,Co。,正在商业化一种新的成型技术类别,该技术利用受控粘度和专利的脉搏包装方法来为各种行业创建高价值组件。X2F的过程使用先前认为无法塑造的先进材料,并以提高的操作效率来实现复杂的产品几何形状。该技术在模制零件的产品设计,工具和材料科学方面创造了全新的范例。
- GUNDAM1000可隔离的电荷电流 - 无需 - 不需要的电阻,感应电阻器或反向二极管 - 用于单细胞Li -ion电池,使用ESOP8PACKAGE-恒定电流/恒定电压模式操作,具有热保护功能的恒定电流/恒定电压函数 - 精度 - 精度±1%准确的预售电流 - 供应电流 - 供应电流 - 频率为5.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.99 Inrush电流 - 电池温度监控功能 - 可熟功能
神经刺激是一个快速增长的市场,在2027年的年增长率为8.5%,预计全球市场销量为410亿美元,[1],全球医疗技术公司以及试图商业化技术的初创企业。[2,3]要在植入医学中推动这场革命,需要新的功率来源,这可以为植入物提供安全,稳定的能量,同时使这些设备的微型化到空前的规模,以最大程度地减少植入物对患者的影响。植入物设备的功率需求通常位于100 nW至1 MW的范围内[4-6],并且能量和功率密度增加的功率源超出了当前功能,可以使感应,电子刺激或药物输送的新功能非常不可能。迄今为止,可植入的设备由诸如Li – I 2 Pacemaker电池[7,8]等电池提供动力,其电量和重量的能量密度分别为≈1000WH-1和≈270WH kg-1,[9],或通过无线能量传输,例如RF传输[10,1111]或Ulteras-Asound。[12]由于其性质,电池不能在不牺牲大量的能量存储能力的情况下轻松地微型化,[13],并且由于使用天线区域通过感应尺度传输的功率,无线能量传递的微型化电位也受到限制。此外,Li – I 2起搏器电池是不可充电的电池,这意味着
Boyd Corporation 拥有 90 多年以客户为中心的业绩成功经验,是先进密封、热管理和保护解决方案领域的全球领导者。Boyd 于 1928 年从加州湾区的一家工业制造商起步,如今已发展成为一家充满活力的全球创新者。通过安全地探索太空来激发人类的好奇心。提高医疗保健和交通运输的安全性和灵活性。实现更快、更明亮、功能更强大且功率密度更高的技术。从自动驾驶汽车到脑外科手术、从空间站到智能农业、从高性能计算设备到可穿戴医疗技术。随着我们的客户重新定义他们的市场和技术,Boyd 的独特解决方案将助力他们实现目标。
水凝胶因其独特的特性(例如高含水量、柔软性和生物相容性)而成为柔性电子产品的有前途的材料。从这个角度来看,我们概述了柔性电子产品中水凝胶的发展,重点关注三个关键方面:机械性能、界面粘附和导电性。我们讨论了设计高性能水凝胶的原理,并介绍了它们在医疗保健柔性电子产品领域的潜在应用的代表性示例。尽管取得了重大进展,但仍存在一些挑战,包括提高抗疲劳能力、增强界面粘附和平衡潮湿环境中的含水量。此外,我们强调了在未来研究中考虑水凝胶-细胞相互作用和水凝胶动态特性的重要性。展望未来,柔性电子产品中水凝胶的未来前景光明,令人兴奋的机遇即将出现,但需要继续投资研发以克服剩余的挑战。
•高露山大学,纽约州哈姆尔顿•MIT和MIT LL,马萨诸塞州波士顿•Nist,Boulder,Co•UCSD,UCSD,UCSD,加利福尼亚州圣地亚哥,加利福尼亚州•USC,加利福尼亚州洛杉矶,加利福尼亚州•Suny Stony Brook,Suny Stony Brook,Stony Brook ny•Yokohama University,Yokohama University,Yokohama,Yokohama,Japan,Tohoku,Tohoku,Tohoku,tohoku dive,•