pentadiamond是一种由杂化SP 2和SP 3原子组成的碳同素同质量,该原子被预测是稳定且可合成的。在这项工作中,我们采用第一个原理计算来探索五角大陆的电源结构,光学特征,机械响应和晶格导热率,并与钻石中的相应特性进行了直接比较。HSE06密度功能可预测五角星和钻石的间接电子带隙,其值分别为3.58 eV和5.27 eV。光学特征的结果表明,五角星在中部紫外线区域的吸收量很大,其中钻石没有吸收光,与较小的五角星的带隙一致。发现五角星的弹性模量和拉伸强度分别为496 GPA和60 GPA,大大低于钻石的相应值。通过求解Boltzmann的传输方程来检查晶格的热导率,并通过通过最新的机器学习的原子间电位评估了Anharmonic Force常数。我们预测,五角星原子的热电导率为427 w/m-k,不到钻石相应数量的三分之一。我们的结果提供了五角星原子的内在特性的有用视觉,但与钻石相比,它在机械强度和热传导方面的某些缺点。
这项研究探讨了从过渡金属二分法生成元(TMD)中单层的光学特性,这些材料因其独特的电子和光学特性而引起了刻印烯后引起注意的材料。我们分析了TMD单层的晶体结构,布里渊区和电子带结构,为了解其多样化的光学现象奠定了基础。特别重点放在跨山谷的能量谱上,并使用有效的哈密顿量用于平行自旋带。我们研究了带之间的光学转变,包括单,二和三光过程,开发方程式以计算考虑极化,光频率和温度的过渡概率。我们的理论分析植根于量子力学,阐明了决定这些转变的基质元素,强调了复杂组合对TMD单层光学行为的影响。这项工作不仅可以提高我们对TMD光学特性的理解,而且还强调了它们用于光电应用的潜力,标志着对半导体物理领域的重要贡献。关键字:偏光光子;矩阵元素;光学过渡;两频近似;当前载体; Electron Hamiltonian;动量操作员;旋转状态PACS:71.20。- b,71.28。+ D
iii-V半导体化合物形成了各种离散的核心材料系统,这些系统的核心材料系统最终完全集成了光子组件(激光器和光学放大器,调节器,光电探测器和被动光功能)以及高强度的电子设备。III-V化合物的一个关键特征是它们表现出直接的带隙,从而有效地产生和放大光,而不是间接的带隙半导体(如硅和锗)。自上世纪的六十年代以来,这导致了广泛的半导体激光类型(CW,可调,多波长,脉冲,频率 - 梳子,单光子,单个光子)的发展。通过将不同的III-V化合物合金调整材料的电子带隙,可以使光的波长调节到相当宽的频谱NIR范围内的所需值。基于GAA(〜850-1100 nm)和INP(〜1200-1700 nm)的材料是最突出的系统,主要由光纤通信驱动。借助此应用领域,INP在具有多种结构的半导体激光器的整合中发挥了较高的作用,从而可以在光子整合电路中对光子进行操纵,以促进多种功能。最近,基于燃气的二极管激光器(1-8-3.0μm)吸引了对光源在传感应用中的兴趣。
摘要:机械应变工程对于许多集成的光子应用一直很有希望。然而,对于材料电子带隙的工程,应变均匀性与与光子集成电路(图片)的集成兼容性之间存在权衡。在此,我们采用了氮化硅(SIN X)应激源的简单凹陷型设计,以达到均匀的应变,并在图片上感兴趣的材料中具有增强的幅度。正常的,均匀的0.56%薄层紧张的锗(GE) - 隔离剂(GOI)金属 - 肌电指挥剂 - 金属光二极管。该设备在1,550 nm时表现出1.84±0.15 A/W。在1,612 nm处提取的GE吸收系数增强了〜3.2×至8,340 cm -1,并且优于0.53 Ga 0.47的高度,最高为1,630 nm,受测量光谱限制。与非衰退的设备相比,观察到C频带中的额外吸收系数改善10%至20%,在L频带中观察到40%至60%。这项工作促进了自由空间PIC应用的凹陷GOI光电二极管,并为各种铺平了道路(例如ge,GESN或III-V基于图片上均匀紧张的光子设备。
过渡金属二甲化物(TMDS)的扭曲双层揭示了丰富的激子景观,包括混合激子和空间捕获的Moiré激子,占主导地位的材料光学响应。最近的研究表明,在低扭转角度方面,晶格经历了显着的松弛,以最大程度地减少局部堆叠能量。在这里,出现了低能堆叠配置的大域,通过应变使晶格变形,从而影响电子带结构。然而,到目前为止,原子重建对激子能量景观和光学特性的直接影响尚未得到充分了解。在这里,我们采用了微观和材料特异性方法,并预测了重建的晶格中Moiré激子的潜在深度发生了显着变化,并且自然堆叠的TMD TMD同质同层中发生了最大的变化。与刚性晶格相比,我们显示了多个频段的外观,并且捕获位点位置的显着变化。最重要的是,我们预测WSE 2同类体的光学吸收中出现了多发结构 - 与主导刚性晶格的单个峰相比。此发现可以被利用为在天然堆积的扭曲同性恋者中Moiré激子光谱中原子重建的明确特征。
引入的电子传输和定期有序固体中的动力学由内在的量子机械性能,例如电子带结构以及电子,声子和其他准粒子之间的相互作用。Bloch波函数的量子几何形式表现为浆果曲率(反映了Bloch电子的惯性),带状质量,Fermi-liquid Transperties(1),Current-Noise-Noise noise noise noise noise targuin-istics(2),或在平面系统(3)中的超级效果(3),这些数字(3)的数量(3),这些基金会(3),这些基金会(3),这些基金会均具有这些资格。更一般地,Bloch电子的量子几何形状非常重要,因为它为量子力学和材料的电子特性之间的复杂相互作用提供了关键的见解。最近,量子几何形状与光 - 物质相互作用之间的联系已进入舞台,从而提供了对拓扑材料的特殊光电子响应的物理机制的见解(4-8)。然而,Bloch Electrons量子几何形状的动量分辨测量仍然是一个巨大的挑战。在冷原子的背景下引入了一种直接的方法,利用了量子几何形状和光结合相互作用之间的紧密联系,在该环境中,可以直接实现范式模型系统。因为带间过渡偶极基矩阵元素等效于浆果连接(9),所以在谐振单色
2D 过渡金属二硫属化物 (TMDC) 是原子级厚度的半导体,在晶体管和传感器等下一代光电应用方面具有巨大潜力。它们的大表面体积比使其节能,但也对物理化学环境极为敏感。在预测电子行为(例如其能级排列)时必须仔细考虑后者,这最终会影响器件中的电荷载流子注入和传输。这里展示了局部掺杂,从而通过化学工程改造支撑基板的表面来调整单层 TMDC(WSe 2 和 MoS 2)的光电特性。这是通过使用两种不同的自组装单层 (SAM) 图案的微接触印刷来装饰基板来实现的。SAM 具有不同的分子偶极子和介电常数,显著影响 TMDC 的电子和光学特性。通过分析(在各种基底上),可以确认这些影响完全来自 SAM 和 TMDC 之间的相互作用。了解 TMDC 所经历的各种介电环境可以建立电子和光学行为之间的关联。这些变化主要涉及电子带隙宽度的改变,可以使用肖特基-莫特规则计算,并结合 TMDC 周围介质的屏蔽。这些知识可以准确预测单层 TMDC 的(光)电子行为,从而实现先进的设备设计。
在技术应用中使用新兴的二维和分层材料需要详细了解它们的化学和物理特性。在这种情况下,从头算理论方法和模拟发挥着重要作用。在这里,我旨在展示如何使用无参数原子模拟来帮助提高对新型二维材料光电特性的微观理解并预测新材料。我将展示基于多体微扰理论 (MBPT) 的从头算 DFT 和后 DFT (GW 和 BSE) 计算如何提供一个非常有用的方案来研究 i) 巨电子带隙重正化 ii) 强光物质相互作用 iii) 强束缚激子的存在,iv) 激子辐射寿命 v) 电子-声子相互作用对电子和光谱的影响,vi) 掺杂和/或分子功能化如何调整它们的光电特性。在石墨烯之后发现的 2D 材料家族中,我将重点关注那些对光电应用特别感兴趣的材料,例如过渡金属二硫属化物 (TMD) 以及 2D/层状卤化物钙钛矿。还将讨论最近提出的 MoSi2X4 家族的激子。图 1:2D 材料的平方模激子波函数
电子波功能的拓扑方面在确定材料的物理特性中起着至关重要的作用。浆果曲率和Chern数用于定义电子带的拓扑结构。虽然已经研究了浆果曲率及其在材料中的作用,但检测到拓扑不变的Chern数的变化是具有挑战性的。特别是谷谷类型的变化。在这方面,扭曲的双重双层石墨烯(TDBG)已成为一个有前途的平台,以获得对浆果曲率热点的电气控制和其平坦带的山谷Chern数量。此外,应变诱导的TDBG中三倍旋转(C3)对称性的破裂导致浆果曲率的非零第一刻,称为浆果曲率偶极子(BCD),可以使用非线性HALL(NLH)效应来感测。我们使用TDBG揭示了BCD检测到频段中的拓扑转换并更改其符号[1]。在TDBG中,垂直电场对山谷Chern号和BCD进行了调整,并同时为我们提供了一个可调的系统,以探测拓扑过渡的物理。我还将讨论我们使用非线性霍尔物理学探测Moire系统手性的初步实验。1。Sinha等。自然物理学18,765(2022)。
抽象发光构成了对金属热载体过程的独特洞察力,包括用于传感和能量应用的等离子纳米结构中的载体过程。然而,金属发光本质上是弱的,其微观起源仍然存在很广泛的争论,并且它的纳米级载体动力学的潜力在很大程度上无法解释。在这里,我们揭示了从薄单晶金质量产生的发光中的量子力学效应。特别是,我们提供了第一个原理模拟支持的实验证据,以证明其光致发光的起源(即,在互面板中令人兴奋时,会从电子/孔重组中产生的辐射发射)。我们的模型使我们能够确定由于量子机械效应而导致的测得的金发光的变化,因为金纤维厚度降低。令人兴奋的是,这种效应在厚度高达40 nm的发光信号中可观察到,这与费米水平附近电子带结构的平面离散性有关。我们通过第一个原理建模来定性地重现观测值,从而确立了在金单晶型中的发光统一描述,并将其广泛的应用作为携带者的探针,以探测本材料中的载体动力学和光 - 摩擦相互作用。我们的研究为在众多材料系统中的热载体和电荷转移动力学的未来探索铺平了道路。