应用:• 光镊 — 粒子或粒子聚集体的定向操控• 光通信 — 高带宽信息编码• 量子密码学/计算 — 高维量子信息编码• 灵敏光学检测• 原子、核和粒子物理学的基础科学研究(改进的选择规则、二向色性)
摘要 250 ℃低温时效处理可显著提高电子束定向能量沉积 (EB-DED) 制备的 NiTi 合金的拉伸超弹性能。然而由于晶粒尺寸较大,需要很长的时效时间 (长达 200 h) 才能获得优异的拉伸超弹性能。为了加速时效进程,在时效处理之前通过人工热循环处理引入高密度位错(EB-DED 处理的 NiTi 合金中原始位错含量很低),这将促使后续在低温时效处理过程中均匀析出纳米级 Ni 4 Ti 3 颗粒。其相变行为始终保持稳定的两阶段马氏体相变。在 6% 应变循环拉伸试验下,经过热循环处理后,24 h 时效试样经过 10 次循环后的回复率仍在 90% 以上,与未进行热循环处理时效 200 h 的试样性能相当,时效效率大幅提高。
摘要:钻石中的颜色中心在量子光子技术的发展中起着核心作用,而其重要性只有在不久的将来才会增长。对于许多量子应用,需要单个发射器的高收集效率,但是钻石与空气之间的折射率不匹配使常规钻石设备几何形状的最佳收集效率。虽然存在具有近乎统一效率的不同外耦合方法,但由于纳米制作方法的当前局限性,尤其是对于钻石等机械硬材料,尚未实现许多。在这里,我们利用电子束诱导的蚀刻来修改含有宽度和厚度为280 nm和200 nm的集成波导的SN植入钻石量子微芯片。这种方法允许同时使用开放的几何形状和直接写作对主机矩阵进行高分辨率成像和修改。与电子 - 发射极相互作用产生的阴极发光信号相结合时,我们可以通过纳米级空间分辨率实时监测量子发射器的增强。Operando
真正的 3D 嵌套是 EBM 打印如此高效的原因。虽然电子束非常快(单个电子束可以同时保持多达 70 个熔池“活跃”),但需要时间将构建空间加热到其工作温度。但一旦达到温度,EBM 就可以打印从构建板到构建包络顶部的零件堆栈。这大大降低了生产每个零件所需的平均时间。一次运行的零件越多,EBM 的生产力就越高。
• 电子束焊接 • 包覆 • 无损检测 • 铸造和热等静压 • 自动化和 I4.0 • 制造设计 • 工厂和工艺开发 • ICME:综合计算材料工程 • 净零碳技术 • 高温材料(RA 钢)
ADV。克拉科夫,波兰,物理,物理和应用科学,阿格拉科夫大学,AV。波兰的克拉科夫,。科学研究所,波兰Zaragoza,50009 Zaragoza,50009 Zaragoza,50009 Zaragoza,
1。研究中心,中国518107的深圳市孙子大学第七附属医院; 2。干细胞生物学和组织工程中心,干细胞和组织工程的主要实验室,教育部,孙子森大学,广州,510080,中国; 3。宗山眼科中心,太阳森大学,广州,510060,中国; 4。内分泌学系,中国510080的广州太阳YAT-SEN大学的第一家附属医院; 5。国家 - 古旺冈联合工程实验室,用于诊断和治疗血管疾病,第一家附属医院,太阳Yat-Sen University,广州,中国510080; 6。生命科学学院,科学院科技大学,悉尼大学,ULTIMO,新南威尔士州2007年,澳大利亚。†同等贡献 *通讯副教授,钦朱耶,科学研究中心,中国广东的深圳市孙子森大学第七附属医院。电子邮件:yichj@mail.sysu.edu.cn,王王王博士,中国广东的深圳市太阳Yat-Sen University Sun Yat-Sen大学科学研究中心。 电子邮件:wangjch38@mail.sysu.edu.cn电子邮件:yichj@mail.sysu.edu.cn,王王王博士,中国广东的深圳市太阳Yat-Sen University Sun Yat-Sen大学科学研究中心。电子邮件:wangjch38@mail.sysu.edu.cn电子邮件:wangjch38@mail.sysu.edu.cn
摘要 为了将利用电子束光刻技术制作的抗蚀剂图案应用于纳米压印模具,不仅需要考虑从曝光顶面二维观察到的线宽和孔径,还需要考虑包括抗蚀剂横截面形状在内的三维情况。在本研究中,我们关注图案内部的剂量分布和显影时间,并研究它们对抗蚀剂横截面形状的影响。采用曝光方法制作线宽为 100nm 的抗蚀剂图案,其中一条线内的总剂量相同,但一条线内的电子束扫描位置和次数会发生变化。通过电子散射模拟分析的剂量分布与解析后的图案侧壁形状之间的比较结果表明,在特定条件下,剂量分布和实际的抗蚀剂形状在 ±5nm 精度内相互一致。结果表明,即使整个图案的平均剂量相同,抗蚀剂侧壁的实际形状也会因取决于扫描位置和扫描次数的抗蚀剂中的局部剂量分布而改变。此外,我们通过观察不同显影时间下曝光后的抗蚀剂的显影过程,研究了抗蚀剂的分辨机理。结果表明,图案内部剂量的差异引起的显影速度差异对抗蚀剂的截面形状产生影响。本研究结果表明,抗蚀剂内部剂量分布和由此引起的显影速度差异对抗蚀剂截面形状有显著影响,这些参数有望在未来应用于所需截面形状的制作。
增材制造 (AM) 仍是一项相对较新的技术。与从毛坯中去除材料的传统加工不同,AM 用于从空工作空间开始将原料逐层熔合成复杂形状。AM 能够制造复杂的零件几何形状和零件变体,而几乎无需额外制造成本。以前不可能制造的几何形状现在可以作为设计选项使用,例如弯曲的内部通道、复杂的晶格结构和设计的表面孔隙率 - 所有这些都可以重复生产。电子束粉末床熔合 (PBF-EB) 是一种 AM 方法,其中使用电子束将细颗粒粉末加工成零件。自诞生以来,PBF-EB 一直受到可供加工的材料数量的限制。本论文的目的是探索使用 PBF-EB 加工不锈钢的可能性。这项工作的重点是开发高效加工参数,目的是获得高密度成品材料,并了解工艺参数与零件由此产生的微观结构和其他质量方面之间的关系。两种不锈钢粉末,316LN(奥氏体)和超级双相 2507(奥氏体/铁素体),通过各种工艺参数使用各种熔化策略加工成固体零件。在选择一组以高加工速率生产高质量零件的参数之前,对密度、微观结构特征和机械性能进行评估和评定。这项工作的结论是,不锈钢非常适合 PBF-EB 加工,具有宽广的加工窗口。研究还表明,材料性能受所用加工参数的影响很大。对于超级双相不锈钢 2507,制造的部件需要进行制造后热处理才能达到所需的微观结构、相组成和拉伸性能,而 316LN 则可以在更大程度上直接使用,只要使用适当的制造准备和加工参数即可。
摘要 增材制造 (AMed) 钛产品通常采用电子束熔化 (EBM) 生产,因为在真空环境下可以抑制钛合金表面的氧化。AMed 钛产品的表面粗糙度超过 200 µm Rz,非常粗糙的表面会导致疲劳强度降低。因此,需要后续表面精加工工艺。喷砂是 AMed 金属产品常见的表面平滑工艺之一。它可以降低较大的表面粗糙度,并在表面引入压残余应力。然而,将表面粗糙度降低到几个 µm Rz 是有限的。另一方面,最近发现,通过激光束粉末床熔合生产的 AMed 金属表面可以通过大面积电子束 (LEB) 辐照进行平滑。然而,难以平滑初始表面粗糙度较大的表面,并且表面上可能产生拉残余应力。本研究通过喷砂和 LEB 辐照相结合的方式,实现了 AMed 钛合金 (Ti-6Al-4 V) 的表面平滑和残余应力的变化。通过喷砂和 LEB 辐照相结合的方式,AMed Ti-6Al-4 V 合金的表面粗糙度从 265 µm Rz 显著降低至约 2.0 µm Rz。LEB 辐照降低表面粗糙度的速率随喷砂表面平均宽度的减小而线性增加。平均宽度对 LEB 辐照平滑效果的影响可以通过热流体分析来解释。此外,当 LEB 辐照到喷砂表面时,可以降低 LEB 辐照引起的拉伸残余应力。