纠缠是量子力学的一个关键概念,在量子信息和计算领域得到了广泛的研究[1,2]。纠缠也成为多体物理学中的一个重要现象[3],涵盖量子自旋系统[4-6]、近藤效应[7,8]、分数量子霍尔效应[9-11]、非相互作用电子气的自旋[12,13]等各个方面。关联函数对于描述多体系统的物理现象至关重要,因此,研究纠缠和关联函数之间的联系是合乎逻辑的。量子不和谐[14,15]是另一种类型的量子关联,它衡量了量子互信息和经典关联之间的差异。这种关联已被证明可用于某些量子技术任务[16,17],同时也具有理论意义,因为它使用一种不同于传统纠缠态与可分离态分类的方法来表征量子关联。它也有助于研究某些多体系统中的关联程度[18-20]。另一个备受关注的课题是拉什巴效应[21-27],它是一种自旋轨道耦合 (SOC),发生在缺乏结构反演对称性的纳米结构中。在不断发展的自旋电子学研究领域[28],拉什巴 SOC是一种基本工具,它允许利用电场精确控制电子自旋。由于该系统具有与电子气体相同的多体性质,因此研究这种关联具有重要意义。多体物理学中的一个重要概念是费米子的交换空穴,它是由泡利不相容原理产生的。这种基本类型的关联即使在没有粒子间相互作用的情况下也存在。交换空穴可以从两粒子密度矩阵
1 法国巴黎-萨克雷大学泰雷兹公司混合物理部门 - F-91767 帕莱索,法国 2 法国巴黎高等物理与材料研究实验室,PSL 研究大学,法国巴黎国家科学研究院 F-75005 巴黎,法国 3 代尔夫特理工大学 Kavli 纳米科学研究所 - PO Box 5046, 2600 GA 代尔夫特,荷兰 4 萨勒诺大学“ER Caianiello”物理系 - I-84084 Fisciano (SA),意大利 5 CNR-SPIN - Via Giovanni Paolo II, 132, I-84084 Fisciano (SA),意大利 6 查尔姆斯理工大学微技术和纳米科学系-MC2 SE-41296 哥德堡,瑞典 7 物理系和纳米技术与先进科学研究所材料,巴伊兰大学拉马特甘,以色列 8 物理系“E. Pancini”,那不勒斯费德里科二世大学 - Monte S. Angelo 综合楼,I-80126 那不勒斯,意大利 9 GFMC,马德里康普顿斯大学材料物理系 - E-28040 马德里,西班牙 10 CNR-SPIN,Monte S. Angelo 综合楼 - Via Cinthia,I-80126 那不勒斯,意大利
在Garuda飞机驾驶舱中,信息技术的使用是电子飞行袋,它是使用Garuda Electronic Flight手册和Garuda Electronic Airway手册的电子飞行袋。此差距将导致潜在的疏忽并延迟将纸质文件或手册分发给印度尼西亚Garuda航空公司的飞机。有必要研究使用Garuda电子飞行手册软件和Garuda电子气道手册是否可以减轻飞机上飞行员的职责。这项研究旨在了解通过优化人力资源来实施Garuda电子飞行手册和Garuda电子气道手册的影响。研究使用了路径分析方法。这项研究的样本是30名飞行员,因为Garuda电子飞行手册的用户和处理器和Garuda电子气道手册。研究发现,飞行安全的变量直接受GARUDA电子飞行手册,Garuda电子气道手册和人力资源优化的实施。此外,实施Garuda电子飞行手册和Garuda电子气道手册最多是影响飞行安全性的可变。
Ting-Ting Wang 1,2 , Sining Dong 1,2,* , Chong Li 1,2 , Wen-Cheng Yue 1,2 , Yang-Yang Lyu 1,2 , Chen-Guang Wang 1,2 , Chang-Kun Zeng 1 , Zixiong Yuan 1,2 , Wei Zhu 3 , Zhi-Li Xiao 4, 5 , Xiaoli Lu 6 , Bin Liu 1 , Hai Lu 1 , Hua-Bing Wang 1,2,7 , Peiheng Wu 1,2,7 , Wai-Kwong Kwok 4 and Yong-Lei Wang 1,2,7,*
物理学。课程内容:1. 简介:[2 小时] 1.1 非相互作用电子气。2. Born-Oppenhemier 近似:[3 小时] 2.1 基本哈密顿量,2.2 绝热近似,2.3 简化电子问题。3. 二次量子化:[5 小时] 3.1 玻色子,3.2 费米子,3.3 费米子算符。4. Hartree-Fock 近似:[4 小时] 4.1 非相互作用极限,4.2 Hartree-Fock 近似,4.3 图表。5. 相互作用电子气:[4 小时] 5.1 均匀电子气,5.2 Hartree-Fock 激发谱,5.3 金属的结合能。 6. 金属中的局部磁矩:[4 小时] 6.1 局部矩:现象学,6.2 平均场解。 7. 局部矩的猝灭:[8 小时] 7.1 近藤问题,7.2 近藤汉密尔顿量,7.3 为什么 J 为负? 7.4 散射和电阻率最小值,7.5 电子-杂质散射振幅,7.6 近藤温度。
图3给出了不同AlN间隔层厚度下二维电子气密度的变化。间隔层厚度越高,片状电荷密度(ns)越好,在0.5nm~2nm之间与AlN间隔层厚度几乎呈线性关系。电子密度的增加是由于压电和自发极化的影响。由于明显的极化效应,AlN间隔层可能引起偶极散射增加,结果二维电子气迁移率下降。在此临界厚度以下,间隔层增强了导带位移,有效降低了波函数对AlN势垒的穿透,从而降低了合金无序扩散的影响。电子片密度为1.81×1013cm-2,与[15]中计算的1nm AlN层电子片密度大致相同。
A.Bellakhdar a,b,* , A.Telia ba LMSF 半导体和功能材料实验室,Amar Telidji Laghouat 大学,阿尔及利亚 b Laboratoire des Microsystèmes et Instrumentation LMI, Département d'Electronique, Faculté de Technologie, Université des Frères Mentouri, 2 Campus Ahmed Hamani, Ain El Bey, Constantine, Algeria In本研究提出了具有不同 GaN 盖层厚度和重 n 掺杂 GaN 盖层的 GaN/AlInN/GaN 高电子迁移率晶体管 (HEMT)。为了研究 GaN 覆盖层对 (GaN/AlInN/GaN) 异质结构性能的影响,通过求解一维 (1 D) 泊松方程,提出了一种简单的 GaN/AlInN/GaN 高电子迁移率晶体管 (HEMT) 阈值电压分析模型,从而找到了二维电子气 (2DEG) 与控制电压之间的关系。分析中考虑了 AlInN/GaN 和 GaN/AlInN 界面处的自发极化和压电极化。我们的模拟表明,GaN 覆盖层降低了二维电子气 (2DEG) 的面密度,从而导致漏极电流减小,并且 n+ 掺杂的 GaN 覆盖层比未掺杂的 GaN 覆盖层具有更高的面密度。 (2021 年 11 月 28 日收到;2022 年 2 月 19 日接受)关键词:GaN 帽、GaN/AlInN/GaN HEMT、2DEG、2DHG、自发极化、压电极化
第一步,将有关角轨道动量绝热不变性的埃伦费斯特推理应用于氢原子中的电子运动。结果表明,从氢原子中考察的轨道角动量可以推导出从量子能级 1 n + 到能级 n 的能量发射时间。发现这个时间恰好等于焦耳-楞次定律规定的电子在能级 1 n + 和 n 之间跃迁的时间间隔。下一步,将输入量子系统的机械参数应用于计算电子跃迁特征时间间隔。这涉及氢原子中的相邻能级以及受恒定磁场作用的电子气中的朗道能级。
含有丰富核自旋无同位素的半导体越来越多地被研究用作自旋量子比特的主体材料,例如硅[1]、锗[2]和石墨烯[3,4]。结果表明,大多数此类材料在块体材料导带中都包含一个电子谷自由度[5]。在基于这些半导体材料的许多纳米结构中,由此产生的谷分裂仍未完全了解,因此在实践中代表了一个不可预测的系统参数。已知谷自由度可描述为二维电子气(2DEG)中的伪自旋,其属性(即谷分裂和谷相)极大地取决于异质结构的界面[6-13]。单个原子步骤可以改变伪自旋的量化轴,并且电子的谷轨道耦合的复相位可以被修改多达π
马约拉纳态的编织展示了它们的非阿贝尔交换统计数据。编织的一种实现方式需要控制三结器件中所有马约拉纳态之间的成对耦合。要具有绝热性,三结器件需要所需的对耦合足够大并且不需要的耦合消失。在这项工作中,我们设计并模拟了二维电子气中的三结器件,重点关注连接三个马约拉纳态的正常区域。我们使用优化方法在多维电压空间中找到器件的工作状态。利用优化结果,我们通过绝热耦合不同的马约拉纳态对而不关闭拓扑间隙来模拟编织实验。然后,我们评估了在不同形状和无序强度下在三结器件中进行编织的可行性。