我回顾了量子霍尔效应的替代模型的一些方面,该模型不基于无序势的存在。相反,在存在交叉电场和磁场的情况下,采用电子漂移电流的量化来构建非线性传输理论。替代理论的另一个重要组成部分是二维电子气与导线和施加电压的耦合。通过在外部电压固定 2D 子系统中的化学势的图像中工作,实验观察到的电压与量子霍尔平台位置之间的线性关系找到了自然的解释。此外,经典霍尔效应成为量子霍尔效应的自然极限。对于低温(或高电流),非整数子结构将较高的朗道能级分裂为子能级。电阻率中子结构和非整数平台的出现与电子-电子相互作用无关,而是由(线性)电场的存在引起的。一些结果分数恰好对应于半整数平台。
AlGaN/GaN高电子迁移率晶体管(HEMT)或金属绝缘体半导体HEMT(MIS-HEMT),凭借优越的极化诱导高迁移率二维电子气(2DEG),因其高开关速度、低寄生参数和低导通电阻而受到广泛关注,并在高频射频和功率开关应用方面都取得了公认的成功[1-4]。通常在厚钝化电介质(如SiNx)上设置栅极和/或源极场板,以减轻栅极漏极区域的高电场并获得更高的击穿电压[5-7]。它们也有助于抑制表面态引入的电流崩塌[5,8]。然而,场板结构将引入额外的寄生电容,导致更高的VDS×IDS功率损耗和更长的开关持续时间。此外,钝化层还会引入钝化电介质/(Al)GaN界面态,甚至电介质本身的体态,它们的捕获/去捕获过程会引起寄生电容的动态漂移,导致实际应用中开关转换紊乱,dV/dt控制失效[9-11]。
我们研究了在“严格”空间变化的磁场(但不满足磁单极子条件)下相对论冷电子的二维运动。我们发现,在恒定磁场的情况下出现的朗道能级简并性在磁场变化时会消失,自旋向上和自旋向下电子的能级会根据磁场变化的性质以有趣的方式排列。此外,变化的磁场会将零角动量电子的朗道能级与正角动量分开,而恒定场只能将能级分为正角动量和负角动量。探索非均匀磁场中的朗道量子化本身就是一项独特的事业,对凝聚态物质、天体物理学和量子信息等领域都有跨学科影响。作为示例,我们展示了磁化白矮星,它们受到变化的磁场,同时受到洛伦兹力和朗道量子化的影响,从而影响底层的简并电子气,表现出对钱德拉塞卡质量极限的明显违反;并且在空间增长的磁场存在下,电子的量子速度会增加。
我们提出了一种将太赫兹 (THz) 频率量子级联激光器 (QCL) 完全集成到稀释制冷机内的方案,以便将 THz 功率定向传输到样品空间。我们描述了位于制冷机脉冲管冷却器级上的 2.68 THz QCL 的成功运行,其输出通过空心金属波导和 Hysol 热隔离器耦合到位于毫开尔文样品级上的二维电子气 (2DEG) 上,实现了从 QCL 到样品的总损耗 ∼− 9 dB。热隔离器限制了热量泄漏到样品空间,实现基准温度 ∼ 210 mK。我们观察了 QCL 在 2DEG 中引起的回旋共振 (CR),并探讨了 QCL 对制冷机所有阶段的加热影响。在低至 ∼ 430 mK 的电子温度下可以观察到由 THz QCL 引起的 CR 效应。结果表明,在稀释制冷机环境中利用 THz QCL 以及在极低温(< 0.5 K)凝聚态实验中传输 THz 功率是可行的。
7 Zero-temperature Feynman diagrams 176 7.1 Heuristic derivation 177 7.2 Developing the Feynman diagram expansion 183 7.2.1 Symmetry factors 189 7.2.2 Linked-cluster theorem 191 7.3 Feynman rules in momentum space 195 7.3.1 Relationship between energy and the S-matrix 197 7.4 Examples 199 7.4.1 Hartree–Fock energy 199 7.4.2 Exchange correlation 200 7.4.3 Electron in a scattering potential 202 7.5 The self-energy 206 7.5.1 Hartree–Fock self-energy 208 7.6 Response functions 210 7.6.1 Magnetic susceptibility of non-interacting electron gas 215 7.6.2 Derivation of the Lindhard function 218 7.7 The RPA (large- N ) electron gas 219 7.7.1 Jellium: introducing an inert positive background 221 7.7.2 Screening和血浆振荡223 7.7.3 Bardeen-Pines相互作用225 7.7.4 RPA电子气的零点能量228练习229参考232
二维电子气 (2DEG) 可在某些氧化物界面处形成,为创造非凡的物理特性提供了肥沃的土壤。这些特性可用于各种新型电子设备,例如晶体管、气体传感器和自旋电子器件。最近有几项研究展示了 2DEG 在电阻式随机存取存储器 (RRAM) 中的应用。我们简要回顾了氧化物 2DEG 的基础知识,强调了可扩展性和成熟度,并描述了从外延氧化物界面(例如 LaAlO 3 /SrTiO 3 )到简单且高度可扩展的非晶态-多晶系统(例如 Al 2 O 3 /TiO 2 )的最新发展趋势。我们批判性地描述和比较了基于这些系统的最新 RRAM 设备,并强调了 2DEG 系统在 RRAM 应用中的可能优势和潜力。我们认为当前的挑战是围绕从一个设备扩展到大型阵列,其中需要在串联电阻降低和制造技术方面取得进一步进展。最后,我们列出了基于 2DEG 的 RRAM 所带来的一些机遇,包括增强的可调性和设计灵活性,这反过来可以为多级功能提供优势。
电子产品中的辐射损伤减轻仍然是一个挑战,因为唯一成熟的技术——热退火,并不能保证获得良好的结果。在本研究中,我们介绍了一种非热退火技术,其中使用来自非常短持续时间和高电流密度脉冲的电子动量来瞄准和调动缺陷。该技术在 60 Co 伽马辐照(5 × 10 6 拉德剂量和 180 × 10 3 拉德 h − 1 剂量率)GaN 高电子迁移率晶体管上进行了演示。在 30 °C 或更低温度下,饱和电流和最大跨导完全恢复,阈值电压部分恢复。相比之下,300 °C 下的热退火大多使辐照后特性恶化。拉曼光谱显示缺陷增加,从而降低了二维电子气 (2DEG) 浓度并增加了载流子散射。由于电子动量力不适用于聚合物表面钝化,因此所提出的技术无法恢复栅极漏电流,但性能优于热退火。这项研究的结果可能有助于减轻电子器件中某些形式的辐射损伤,而这些损伤很难通过热退火实现。© 2022 电化学学会(“ ECS ” )。由 IOP Publishing Limited 代表 ECS 出版。[DOI:10.1149/2162-8777/ ac7f5a ]
功率放大器 (PA) 技术对于国防和商业领域毫米波 (mm-wave) 通信系统的未来至关重要。这些毫米波频率下的大气衰减很高,因此需要能够抵消这种影响的高功率 PA。氮化镓高电子迁移率晶体管 (GaN HEMT) 凭借其宽带隙和高电子速度,已成为在毫米波频率下提供高功率的主要竞争者。为了改进传统的 GaN HEMT 异质结构,我们之前在氮化铝 (AlN) 平台 [1] 上引入了 HEMT,使用 AlN/GaN/AlN 异质结构。二元 AlN 的最大化带隙可防止缓冲器漏电流并增加 HEMT 击穿电压,同时还提供更高的热导率以增强通道温度管理。此外,GaN 增加的极化偏移允许高度缩放的顶部势垒,同时仍能诱导高密度二维电子气 (2DEG)。我们最近展示了 RF AlN/GaN/AlN HEMT 中高达 2 MV/cm 的高击穿电压 [2],以及这些 HEMT 在 6 GHz 下的 RF 功率操作,功率附加效率为 55%,输出功率 ( ) 为 2.8 W/mm [3]。在这项工作中,我们展示了 AlN/GaN/AlN HEMT 的首次毫米波频率操作,显示峰值 PAE = 29%,相关 = 2.5 W/mm 和 = 7 dB 在 30 GHz 下。
摘要 III 族氮化物和β 相氧化镓(β -Ga 2 O 3 )是目前研究较为深入的两种用于电力电子的宽带隙半导体材料。由于两种材料体系之间的晶格失配度相对较小,且可以利用体相 AlN、GaN 和β -Ga 2 O 3 衬底,因此已经实现了在β -Ga 2 O 3 上外延生长 III 族氮化物或反之亦然。然而,将两种材料体系集成在一起来设计功率器件仍然缺乏。本文数值研究了 AlN/β -Ga 2 O 3 异质结构,利用极化诱导掺杂来实现高性能增强型晶体管。受 AlN/β -Ga 2 O 3 界面极化效应的影响,沟道中的二维电子气浓度最高可达 8.1 × 10 19 cm −3。在沟道顶部引入p-GaN栅极,最终实现了具有可调正阈值电压的常关型AlN/β-Ga 2 O 3场效应晶体管。此外,我们插入了非故意掺杂的GaN背阻挡层以抑制漏极漏电流。最后,为了实现高性能III族氮化物/Ga 2 O 3基功率器件,我们进一步研究和分析了具有不同结构参数的器件的传输和输出特性。
最近,人们研究了从二维介质和单电子转移形成单光子源的可能性 [1–4]。其想法是通过 pn 结以受控方式注入电子,从而根据需要确定性地产生单光子脉冲。横向 pn 结可由毗邻二维空穴气区域的二维电子气区域形成。电子在穿过 pn 结后与 p 型区域的空穴复合时发生单光子发射 [4]。人们在 III-V 半导体异质结构(特别是 GaAs/AlGaAs 系统)中对不同类型的横向 pn 结器件进行了多项研究。在聚焦离子分子束外延法中,两个相邻区域选择性地掺杂 Si 和 Be,以创建 n 型区域和 p 型区域 [5]。在面再生长法中,p 型和 n 型区域都是通过掺杂在 GaAs 表面不同面上的 Si 来创建的 [6, 7]。Cecchini 等人通过蚀刻掉部分 Be 掺杂的 AlGaAs 并形成 n 型 Au-GeNi 接触,从 p 型衬底形成了横向 pn 结。[8–10]。Dai 等人使用两个感应栅极来形成二维电子和空穴气体 [11, 12]。Helgers 等人使用 GaAs 衬底上的量子线作为通道,利用表面声波传输光激发电子和空穴 [13]。在其他类型的材料系统中也可以形成横向 pn 结,