电感器是一种具有频率相关阻抗特性的电气元件;电感器在低频时表现出低阻抗,在高频时表现出高阻抗。虽然“理想”运算放大器输出阻抗特性为零,但“实际”放大器的输出阻抗是电感性的,并且像电感器一样随着频率的增加而增加。EL5157 的输出阻抗如图 2 所示。使用运算放大器的应用中的一个常见挑战是驱动电容负载。之所以有挑战性,是因为运算放大器的电感输出与电容负载一起形成 LC 谐振槽拓扑,其中电容负载电抗与电感驱动阻抗一起导致当反馈围绕环路闭合时产生额外的相位滞后。降低相位裕度会导致放大器振荡的可能性。振荡时,放大器会变得非常热,并且可能会自毁。针对这一挑战,有几个非常著名的解决方案。1) 最简单的解决方案是在输出端串联一个电阻,以强制反馈来自放大器的直接输出,同时隔离无功负载。这种方法的代价是牺牲负载上少量的输出电压摆幅。2) 另一个直接的解决方案是应用“缓冲网络”。缓冲网络是一个与电容负载并联的电阻和电容,在负载上提供电阻阻抗以减少输出相移;提供额外的稳定性。
结论这项工作显示出令人鼓舞的初步结果,其原理具有零电容的CDIR可以成功读取单个光子,减少电容对于降低噪声并允许更快的吞吐量是有利的。带有和不含电容的4角CDIR读数的仪器表明,使用ML可以改善单个光子的空间重建。原则上已经证明了3 x 3 CDIR读数的证明,并将进行进一步的工作,以研究提高空间分辨率的准确性的可能性,使用波形的整合而不是峰。此外,还将评估其他几何形状,以优化读取电子和带宽。
上下文:锻炼引起的肌肉损伤(EIMD)尤其是在运动和康复中。它会导致骨骼肌功能和酸痛的损失。由于没有公司的预防策略,我们旨在评估非热448-kHz电容性电阻单极射频(CRMRF)疗法的预防效率,在膝盖流动中EIMD反应的偏心后出现后,设计:在对照组(CG; n = 15)和实验组(例如; n = 14)中随机分配29名健康男性(年龄:25.2 [4.6] y),其中EG跟随5每天448-kHz CRMRF疗法。所有评估均在基线和EIMD后(EIMD + 1,EIMD + 2,EIMD + 5和EIMD + 9 D)进行。我们测量了股二头肌和半牙肌的张力学,以计算收缩时间,最大位移和收缩的径向速度,单侧等距膝关节孔,最大的自愿收缩扭转扭转扭转扭转和最大的100毫秒速度。结果:最大的自愿收缩扭矩和第一次100毫秒的扭矩发育速率降低了,例如在EG中,并且仅在EG中恢复。二头肌收缩时间仅在CG中增加(无恢复),而在半决肌收缩时间中,EG(仅在EIMD + 1)和CG(无恢复)中增加了。在这两种肌肉中,EG(在EIMD + 1和EIMD + 2)和CG(无恢复)中的张力学最大位移降低。此外,在两种肌肉中,径向收缩的径向速度在EG中(从EIMD + 1到EIMD + 5)和CG(无恢复)。结论:该研究表明,诱导EIMD骨骼肌力量和膝关节骨的收缩参数后,CRMRF治疗的有益作用。
我们提出了一种确定半导体背景掺杂类型的方法,即在过度蚀刻的双台面 pin 或 nip 结构上使用电容电压测量。与霍尔测量不同,此方法不受基板电导率的限制。通过测量具有不同顶部和底部台面尺寸的器件的电容,我们能够最终确定哪个台面包含 pn 结,从而揭示本征层的极性。当在 GaSb pin 和 nip 结构上演示时,此方法确定该材料是残留掺杂的 p 型,这已由其他来源充分证实。然后将该方法应用于 10 单层 InAs/10 单层 A1Sb 超晶格,其掺杂极性未知,并表明该材料也是 p 型。
摘要 :风能的随机性与波动性给风电并网带来巨大挑战,基于电解池制氢与超级电容的混合储能技术成为平抑风电功率波动的有效途径。在建立并网型风氢耦合系统工作特性约束和混合储能系统初始投资成本最小的基础上,提出了基于低通滤波-波动观测的碱性电解池-超级电容混合储能配置方法,并制定了基于超级电容SOC(荷电状态)的混合储能协调控制策略。实例研究结果表明,本文提出的混合储能系统配置方法及控制策略有效,可降低风电并网功率波动,满足并网标准。
采用一步水热法制备碳化钛/还原氧化石墨烯 (Ti 3 C 2 T z /rGO) 凝胶。该凝胶具有高度多孔结构,表面积为 ~224 m 2 /g,平均孔径为 ~3.6 nm。反应前体中 GO 和 Ti 3 C 2 T z 纳米片的含量不同,可产生不同的微观结构。Ti 3 C 2 T z /rGO 凝胶的超级电容器性能随成分而发生显著变化。比电容最初随 Ti 3 C 2 T z 含量的增加而增加,但在高 Ti 3 C 2 T z 含量下无法形成凝胶。此外,电容保持率随 Ti 3 C 2 T z 含量的增加而降低。与纯 rGO 和 Ti 3 C 2 T z 相比,Ti 3 C 2 T z /rGO 凝胶电极表现出增强的超级电容器性能,具有高电位窗口 (1.5 V) 和大比电容 (920 F/g)。 rGO 的 EDLC 与 Ti 3 C 2 T z 的氧化还原电容的协同效应是超级电容器性能增强的原因。用 Ti 3 C 2 T z /rGO 构建了一个对称双电极超级电容器单元,其面积电容非常高(158 mF/cm 2 ),能量密度大(~31.5 μW h/cm 2
扫描率。循环伏安法曲线将对称形状从0.005 V•s -1至0.1 V•S -1保持,表明电极材料的放大能力。由于法拉第反应时间不足以高扫描速率,特定电容随扫描速率的增加而降低。图5C显示了在不同电流密度下TN-MO-S的充电偏差曲线。几乎对称的三角形轮廓表现出电极的电容和可逆特征。
接地隔离放大器 BA3123F 概述 BA3123F 是为汽车音响应用开发的接地隔离放大器。该 IC 可有效消除由接线电阻引起的问题,并消除汽车中使用的其他电气设备产生的噪声。该 IC 所需的外部电容值非常小,因此可以实现紧凑而可靠的装置设计。特点 ■ 无需大电容 ■ 高共模抑制比 ■ 低噪音 ■ 低失真 ■ 双通道应用 汽车音响系统
信息 xcelitas Technologies 的大面积 PIN 光电二极管类型 C30619GH、C30641GH、C30642GH、C30665GH 和 C30723GH 是高响应、低电容 InGaAs 探测器。它们专为测量应用而设计,如光功率计、光纤测试设备、近红外光谱和仪器。它们的平面钝化结构具有低电容以扩展带宽和高分流电阻以实现最大灵敏度。典型设备对大于 +13dBm (20 mW) 的光功率具有 1% 以上的非线性,并且在整个探测器有效面积上具有 2% 以内的均匀性。我们的大面积 InGaAs 设备在 850 nm 处的典型响应度为 0.2 A/W,允许在设计为在 850 nm、1300 nm 和 1550 nm 下工作的光纤测试仪器中使用单个探测器。提供可选的超低电容设备(-LC 选项)。它们电容只有标准类型电容的一半,因此 3 dB 带宽是其两倍。这些器件的有效面积从 0.5 mm 到 5.0 mm,采用密封 TO 封装。Excelitas 认识到不同的应用具有不同的性能要求,因此提供了这些光电二极管的各种定制以满足您的设计挑战。响应度和噪声筛选、定制器件测试、TEC 冷却器件和结合带通滤波器是许多可用的特定于应用的解决方案中的一部分。测试方法 Excelitas 会验证每台器件的电光规格。制造过程中的目视检查按照我们的质量标准进行,并剔除不合格器件。Excelitas Technologies 经过 ISO-9001 认证,光电二极管设计符合 MIL-STD-883 和/或 MIL-STD-750 规格。包装和运输所有大面积 InGaAs PIN 二极管都装在 ESD 安全塑料托盘中运输。