摘要。这些年来,工业进步带来了快速、高质量的生产。尽管取得了这些进步,但与此类生产相关的影响,无论是社会影响、经济影响还是环境影响,有时都没有得到广泛的研究。该行业意识到了更环保的方法的重要性,因此,出现了新的可持续技术,如增材制造 (AM)。为了概括 AM 相对于传统制造的环境效益,使用了生命周期评估 (LCA) 等方法。拟议的工作旨在了解和量化与用于制造金属零件的特定 AM 技术(电弧增材制造 (WAAM))相关的环境影响。进行了 LCA,并考虑了相同情况,分析了与生产 3 种不同金属零件相关的环境影响。为了了解获得的结果,同样考虑了也用于制造金属零件的计算机数控 (CNC) 铣削。在这个特定的应用中,与 CNC 铣削相比,WAAM 对环境的影响被证实为 12%-47%,具体取决于所考虑的几何形状。这两种工艺确定的环境热点都是原材料的生产。
收稿日期:2017 年 1 月 X 日;修订日期:2017 年 2 月 X 日;接受日期:2017 年 3 月 X 日 摘要 增材制造 (AM) 因其高材料利用率和产品设计灵活性而受到越来越多的关注。WAAM 的特点是能够管理各种金属材料和高沉积速度。然而,它的形状精度低于通过其他 AM 工艺积累的形状精度,并且需要精加工作为后处理。此外,由金属组成的 AM 积累由于反复熔化和快速凝固而具有复杂的热历史。因此,使用 SUS316L 奥氏体不锈钢,其积累的微观结构中会发生树枝状生长。因此,与等粒结构相比,不锈钢的机械性能(例如延展性和屈服强度)是各向异性的。因此,我们在此提出了一种结合线材和电弧增材制造 (WAAM) 和精加工系统的新系统。在该方法中,当熔融金属凝固时,通过旋转工具进行精加工。使用新系统进行实验,以抑制 WAAM 累积产生的各向异性微观结构。作为旋转工具,使用切削工具和摩擦搅拌抛光 (FSB) 工具。进行微观结构观察和 X 射线衍射分析以评估累积的各向异性。使用新系统,可以抑制累积中的枝晶生长。通过将上述同时处理系统应用于 WAAM 沉积的最外层,预计可以通过表面改性提高疲劳强度并简化精加工工艺。 - 关键词:线材和电弧增材制造、定向能量沉积、X 射线衍射分析、精加工工艺、切削、摩擦搅拌抛光
在地面试验j7,8,91和飞行试验[lO,ll]中,高压太阳能电池阵列上出现了许多电弧现象。迄今为止,唯一的理论假设来自文献[112]。在这项研究中,有人提出,每个互连器上都有一层薄薄的绝缘污染物。这种污染物可能是由于暴露在空气中而产生的,也可能是在制造过程中产生的。来自空间等离子体的离子被互连器上的负电位吸引。这些离子积聚在表面层,导致层中形成电场。随着层继续充电,内部场变得足够大,足以导致电子发射到空间等离子体中。这种电子流导致层中随后加热和电离。这就是所谓的放电。在本文中,我们集中研究了低地球轨道负偏压太阳能电池阵列的行为,并对观察到的电弧提出了一种新的解释。有人提出,实验观察到的预击穿电流导致中性气体分子从太阳能电池盖玻片的侧面解吸。这些分子在互连线上积聚,并在表面气体层内发生电弧。推导出电压阈值的表达式,并研究了其与气体和几何特性的关系。电压阈值与等离子体密度无关,而与太阳能电池互连连接的几何结构密切相关。第 2 节回顾了实验工作,并描述了低地球轨道的等离子体和中性环境。第 3 节开发了击穿模型并获得了击穿阈值。第 4 节讨论了气体和几何参数的关系以及实验数据在该理论中的应用。最后,在最后一节中,提出了一些实验测试来阐明理论模型。
摘要:脱碳是材料表面在高温氧化环境中发生的一种不希望出现的碳损失现象。钢在热处理后的脱碳问题已被广泛研究和报道。然而,到目前为止,还没有关于增材制造零件脱碳的系统研究。电弧增材制造 (WAAM) 是一种生产大型工程零件的高效增材制造工艺。由于 WAAM 生产的零件通常尺寸较大,因此使用真空环境来防止脱碳并不总是可行的。因此,有必要研究 WAAM 生产零件的脱碳问题,尤其是在热处理工艺之后。本研究使用打印材料和在不同温度(800 ◦ C、850 ◦ C、900 ◦ C 和 950 ◦ C)下热处理不同时间(30 分钟、60 分钟和 90 分钟)的样品研究了 WAAM 生产的 ER70S-6 钢的脱碳情况。此外,使用 Thermo-Calc 计算软件进行数值模拟,以预测钢在热处理过程中的碳浓度分布。发现脱碳不仅发生在热处理样品中,而且发生在打印部件的表面上(尽管使用氩气进行保护)。发现脱碳深度随着热处理温度或持续时间的增加而增加。在最低温度 800 ◦ C 下仅热处理 30 分钟的部件具有约 200 µ m 的较大脱碳深度。对于相同的 30 分钟加热时间,温度从 150 ◦ C 升至 950 ◦ C,脱碳深度急剧增加 150% 至 500 µ m。这项研究很好地证明了需要进一步研究以控制或最大限度地减少脱碳,从而确保增材制造工程部件的质量和可靠性。
为了减少所需的 PPE 数量,必须减少入射能量。有两种方法可以降低电弧闪光事件的入射能量,即减少故障电流或清除时间以及减少可用能量。可以通过使用限流保险丝和(对于单相故障)电阻接地来减少可用能量。由于系统协调要求,在使用过流保护时通常无法减少清除时间。基于电流的保护必须具有足够的延迟,以防止在瞬时过载或电流尖峰时不必要地跳闸,从而失去宝贵的反应时间。电弧闪光继电器主要依靠光来解决此问题,从而实现业内最快的反应时间。PGR-8800 和 AF0500 继电器可以检测电弧情况并在 1 毫秒内向断路器发送跳闸信号。AF0500 的反应时间在 3-8 毫秒之间,具体取决于配置。此检测时间比标准保护和断路器快得多,这意味着将弧闪继电器与断路器(仅限 PGR-8800)结合使用将降低入射能量。这可提高工人安全性、减少故障损坏并延长正常运行时间。虽然弧闪能量已经降低,但确定这种降低是否会导致 PPE 类别降低最终将取决于电气系统。
根据文献和我们的经验,由于多种绝缘缺陷而引起的电弧是锂离子电池火灾的重要原因[1,2]。结果是电池零件的短路或整个电池的短路,而无需经典系统范围的保护措施(电池管理系统(BMS)和保险丝)。在这种情况下,与从单个细胞到其他细胞的热失控[4]相关的研究[3] [3],几个细胞可以同时进入热失控。风险是同时在短路环路中所有累加器的热失控,火灾的启动非常快,大量可燃气体产生和能量释放。我们研究工作的一部分是表征累加器内部保护的最大中断功能[5]。这项工作表明,在这种情况下,内置电池保护无法打断电流。因此,必须在所有情况下实施有效的绝缘策略。在本文中,我们研究了需要考虑到正确隔离电池系统的各种概念。
微型真空电弧推力器是微型和纳米卫星上推进系统的候选系统之一。它们具有多种优势,例如比冲高、使用密度高、体积小的固体推进剂而不必使用储罐和压力系统,以及包含电子和离子的等离子体膨胀而不必使用中和阴极。多电荷离子的出现是解释离子以极高速度存在的原因之一。本文重点介绍了真空电弧推力器的简化一维模型,考虑了真空电弧推力器典型条件下阴极表面的电子和原子发射以及极间气体的分解。对于钛阴极材料,结果表明,逐步电离是理解真空电弧条件下观察到的高等离子体的关键因素。
CAPVD 的主要优势包括:形成高密度、高附着力的涂层,具有良好的沉积速率和厚度控制(± 5 纳米)。ARCI 的半工业化设备配备 400 毫米长(Ф:110 毫米)圆柱形阴极,与任何其他传统 CAPVD 设备相比,它能够减少液滴形成。要涂覆的目标的最大尺寸可以是:350 毫米长 x 100 毫米宽(Ф)。CAPVD 设备具有独特的优势,可用于开发汽车、航空航天、制造、光学、电子、替代能源等主要领域的薄膜/涂层。
线弧添加剂制造是一种近网状处理技术,可允许对大型和定制的金属零件的成本效益。在电弧添加剂制造中处理铝的处理非常具有挑战性,尤其是在孔隙率方面。在目前的工作中,研究了AW4043/ALSI5(wt%)的线弧添加剂制造中的孔隙行为,并开发了后处理方法。已经观察到,随着屏蔽气体流量的增加,铝零件的孔隙率也增加了,由于熔体池通过强制对流迅速固化而增加。更高的对流率似乎限制了气体夹杂物的逃脱。此外,从熔体池逸出的气体夹杂物在每个沉积层的表面上留出空腔。过程摄像机成像用于监测这些空腔以形成有关部分孔隙率的形成。观测值是由计算流体动力学模拟支持的,这些模拟表明,气流与线弧添加剂制造制造的铝制零件的孔隙率相关。由于较低的气体流速导致对流冷却的减少,因此熔体池在更长的时间内保持液体,从而使孔逸出更长的时间,从而降低了孔隙度。基于这些调查,提出了一种监视方法。
电弧增材制造 (WAAM) 是一种允许高效原位生产组件或再制造的工艺,它能够以更高的沉积速率和更低的成本进行生产。然而,WAAM 组件在沉积过程中会受到散热的影响,从而导致粗柱状晶粒生长,造成机械性能较差,限制工业应用。因此,本研究调查了将 Al 2 O 3 陶瓷粉末颗粒孕育剂引入 AWS A5.9 ER308LSi 不锈钢壁结构中的作用,通过细化晶粒工艺来提高机械性能。在沉积过程中,当温度降至 150ᵒC 时,手动将 Al 2 O 3 陶瓷粉末颗粒添加到每一层。为了弥补这些知识空白,我们进行了一系列完整的拉伸测试。制造了 WAAM 壁并分析了样品的微观结构。结果表明,WAAM SS308LSi 部件在沉积方向上的最高抗拉强度为 560 MPa,与未接种样品相比增加了 6%。这种改进是由于晶粒细化和异质成核的成功。该研究证明了该技术在 WAAM 部件制造或再制造过程中改善机械性能和微观结构的潜力。