世界上生产最多的植物油被认为是粗棕榈油(CPO)。铣削后立即,每月从JP,Calaro和P.(对照)夫人拥有的油棕种植园收集了处理后的CPO(n = 18)。使用电感耦合等离子体光学发射光谱仪(ICP-OES)分析重金属的样品(Mn,Zn,Co,Pb,pb,ni,ni,cr,cr,cd和as)。在所有种植园的CPO中,重金属的浓度变化,并且在CPO中从农药文化种植园(JP和Calaro油棕榈种植园)中升起。油棕榈种植园Calaro的浓度最高,在所研究的所有重金属中。JP油中的平均重金属浓度为0.29 mg/kg(CO),0.41 mg/kg(Pb),3.22 mg/kg(Ni),0.33 mg/kg(CR),0.27 mg/kg/kg/kg(CD),0.31 mg/kg/kg(as),5.67 mg/kg(aS),/kg/kg/kg/kg/kg(2.18 mn),和2.18 mm n M.118 mm,和,和,和,和,和,和,和2.18 m。 CALARO中的CPO为0.45 mg/kg(CO),0.62 mg/kg(PB),4.27 mg/kg(Ni),0.45 mg/kg(CR),0.39 mg/kg(CD),0.44 mg/kg(as),0.44 mg/kg(AS),8.15 mg/kg(8.15 mg/kg(Zn)和2.99 MN和2.99 MN(MMG/KN)。CPO具有平均浓度的CO,Pb,Ni,Cr,Cd,AS和MN,其高于WHO的食物可接受限制,使其不适合人类消费。根据其THQ(目标危险商)的价值和EDI(估计的每日摄入量),锌是Calaro和JP油棕种植园中非癌污染的主要原因。来自正在研究的种植园中CPO中的所有重金属的EDI值小于其RFD(参考口服剂量)值。由CPO中每个重金属的THQ,HRI和EDI值表明了安全性。当消耗了Calaro和JP油棕种植园的CPO时,铅是致癌污染的主要原因。Calaro油棕和JP油棕榈种植园的CPO中的PB和NI致癌风险值大于10-4,这表明在60年的终生过程中,消费者可能由于PB和NI中毒而发展癌症。
I.引言m绘制的喷嘴推进器是正在开发的几种技术之一,旨在满足对低功率,高特定冲动的空间推进的需求。这些推进器通过通过扩展的直流磁场加热和加速等离子体来运行[1]。主要存储在血浆电子中的热能随着血浆通过磁场扩展而转换为离子动能。通常,这些设备使用射频或微波功率来加热等离子体,从而实现无电极操作。此推进器体系结构具有多种属性,使其非常适合小型卫星推进。例如,缺乏电极可以进行反应性推进剂和潜在的低侵蚀操作。同样,该设计仅需要一个电源。与以前的设计相比,使用电子回旋共振(ECR)作为磁性喷嘴推进器中的加热源的最新发展已产生有希望的结果。推力支架测量结果显示,在30瓦的1000秒内,特定的冲动在10%以上的推力官方官方[2]。这是低功率直升机的发布数据和电感耦合等离子体设计的几倍[3]。话虽如此,尽管ECR推进器的性能是有希望的,但对于任务申请,水平仍然没有竞争力。为了充分证明这项技术的潜力,迫切需要确定技术途径以更快地提高其成熟度。此启用等离子属性,即高电子温度。为此,以前的参数实验表明,对于推进器几何形状的小变化可能对整体性能具有很大的影响,这表明可能进行进一步的性能优化[4]。改善ECR性能的另一种方法是操纵微波输入到推进器的功率调节。例如,将具有不同频率的多个波在注入推进器之前混合在一起,或以脉冲方式调节振幅。波浪混合方法的基础假设是改变功率条件可能会改变ECR共振区的位置和大小。另一方面,使用脉冲功率使推进器可以摆脱源于0D功率平衡的正常限制。两种类型的功率调节已经成功地在用于重离子生产的ECR离子来源上实施[5]。但是,尚未对推进器进行探索。采用这种优化方法的主要挑战之一是问题的维度。没有完整的基础物理模型,优化需要无梯度的方法。只有两个免费参数,探索设计空间可能需要数十个或数百个样本点。因此,对于可以更有效地测试每个设计点的工具来说,需求显而易见。这项工作的目标是探索通过传统的单频率操作,两频加热和脉冲操作来优化低功率ECR推进器的策略。本文以以下方式组织。sec。sec。我们使用基于替代物的优化算法来指导每种情况下参数空间的探索。我们首先激励我们的研究。ii通过引入推进器的全局模型,我们用来确定密钥优化参数。iii我们描述了实验设置,包括推进器,真空设施和所使用的诊断。第四节详细详细介绍了优化过程和
esearchers from France's Institute of Electronics, Microelectronics and Nanotechnology (IEMN) and Siltronic AG in Germany claim the first demonstration of high-current operation (above 10A) for vertical gallium nitride (GaN)-based devices on silicon substrates [Youssef Hamdaoui et al, IEEE Transactions on Electron Devices, vol.72(2025),否。1(1月),P338]。 团队评论说:“二极管提供了一个未经原理的高州河流电流,直径超过11.5a。 这既归因于反向N-FACE欧姆接触的优化,也归因于实施厚的铜电镀,将硅底物代替为散热器。”这些设备使用了完全垂直的,而不是垂直的结构 “伪垂直”是指所有触点在芯片或晶圆的前面进行的设备。 虽然设备主体中的电流流在此类排列中大约垂直,但电流在N-Contact层中横向流动。 结果是流动效应倾向于降低伪垂直设备的能力处理能力。 完全垂直的结构有望更高的击穿电压,并降低了抗压电压。 在硅底物上生产,而不是碳化硅或散装/独立式gan,也应使GAN设备在低成本应用中更具竞争力。 通过金属有机化学蒸气沉积(MOCVD)制备了两个六英寸的gan/si晶状体(图1)。 一个晶圆具有4.5µm轻轻的N掺杂(N - )漂移层。 另一个晶圆具有一个7.4µ流的漂移区域。1(1月),P338]。团队评论说:“二极管提供了一个未经原理的高州河流电流,直径超过11.5a。这既归因于反向N-FACE欧姆接触的优化,也归因于实施厚的铜电镀,将硅底物代替为散热器。”这些设备使用了完全垂直的,而不是垂直的结构“伪垂直”是指所有触点在芯片或晶圆的前面进行的设备。虽然设备主体中的电流流在此类排列中大约垂直,但电流在N-Contact层中横向流动。结果是流动效应倾向于降低伪垂直设备的能力处理能力。完全垂直的结构有望更高的击穿电压,并降低了抗压电压。在硅底物上生产,而不是碳化硅或散装/独立式gan,也应使GAN设备在低成本应用中更具竞争力。通过金属有机化学蒸气沉积(MOCVD)制备了两个六英寸的gan/si晶状体(图1)。一个晶圆具有4.5µm轻轻的N掺杂(N - )漂移层。另一个晶圆具有一个7.4µ流的漂移区域。根据电化学电容 - 电压(ECV)测量值,漂移层中的硅掺杂浓度为3x10 16 /cm 3,净离子化电子密度为9x10 15 /cm。较厚的漂移层应承受更高的电压,但要以更高的抗性为代价。在弱梁暗场模式下使用透射电子显微镜(TEM)的检查确定螺纹位错密度〜5x10 8 /cm 2。霍尔效应测量值的漂移层迁移率为756cm 2 /v-s。P-I-N二极管是制造的,从用作边缘终止的深斜角台面开始。通过血浆反应离子蚀刻(RIE)和电感耦合等离子体(ICP)蚀刻进行深度蚀刻。边缘终止的目的是将电场散布在交界处,并减少泄漏。