我们报告的测量值表征了动力学电感检测器阵列的性能,该阵列设计为25微米的波长和非常低的光学背景水平,适用于诸如低温冷却的空间望远镜上的远红外仪器。在低光通量下的脉冲计数模式下,检测器可以解析单个25微米光子。在集成模式下,检测器在70 ZW至200 fw的吸收功率中保持光子噪声有限,在6个以上的数量级上,限制了噪声等效功率为4。6×10 - 20 W Hz -1在1 Hz时。 此外,检测器在光载荷下至1 MHz的平坦功率光谱高度稳定。 确定检测器的操作参数,包括在铝吸收元件和准粒子自我重组常数中转化为准粒子的转化效率。6×10 - 20 W Hz -1在1 Hz时。此外,检测器在光载荷下至1 MHz的平坦功率光谱高度稳定。操作参数,包括在铝吸收元件和准粒子自我重组常数中转化为准粒子的转化效率。
摘要 本文介绍并分析了一种专用于 2.4 GHz 无线传感器网络 (WSN) 应用的多模式低噪声放大器 (LNA) 的设计。所提出的无电感器 LNA 采用 28 nm FDSOI CMOS 技术实现,基于共栅极配置,其中嵌入共源级以提高电路的整体跨导。该 LNA 经过专门设计和优化,可解决三种操作模式。重新配置是通过电流调谐以及切换放大晶体管的背栅极来完成的。所提出的实现方式可使品质因数 (FOM) 在不同操作模式下保持恒定。在低功耗模式下,LNA 仅消耗 350 uW。它实现了 16.8 dB 的电压增益 (G v ) 和 6.6 dB 的噪声系数 (NF)。在中等性能模式下,增益和噪声系数分别提高到 19.4 dB 和 5.4 dB,功耗为 0.9 mW。在高性能模式下,增益最大,为 22.9 dB,噪声系数最小,为 3.6 dB,功耗为 2 mW。输入参考三阶截点 (IIP3) 所表示的线性度恒定,接近 -16 dBm。报道的 LNA 仅占用 0.0015 mm 2 。
1 芝加哥大学詹姆斯弗兰克研究所,美国伊利诺伊州芝加哥 60637 2 芝加哥大学物理系,美国伊利诺伊州芝加哥 60637 3 斯坦福大学物理与应用物理系,美国加利福尼亚州斯坦福 94305 4 西北大学物理与天文系,美国伊利诺伊州埃文斯顿 60208 5 耶鲁大学耶鲁量子研究所,美国康涅狄格州纽黑文 06511 6 中国科学技术大学合肥国家微尺度物质科学研究中心和物理科学学院,中国合肥 230026 7 中国科学技术大学上海量子科学研究中心和中科院量子信息与量子物理卓越创新中心,上海 201315 8 普林斯顿大学物理系,美国新泽西州普林斯顿 08544 9 芝加哥大学普利兹克分子工程学院,美国伊利诺伊州芝加哥60637,美国
使用电感,流量和磁性(IFM)技术控制和监测,呈现了具有先进的智能植物浇水系统的全面设计,实施和彻底的性能评估,该系统配备了IFM Technologies,该系统配备了高级控制和监测功能。该系统的主要目标是在确保最佳植物生长的同时优化用水。这是通过集成多种传感器来实现的,这些传感器可以监视关键的环境参数,例如土壤温度,金属锅的存在,环境温度和光强度。为了有效调节植物的水流,该系统采用了复杂的控制算法。此外,它采用远程监视和控制功能设计,使用户可以通过人机接口显示界面方便地访问和管理浇水系统。该系统的性能已在不同的植物生长情景中进行了实验验证,以证明其在现实世界中的有效性。与传统灌溉方法相比,结果显示了水效率,整体植物健康和资源利用的显着提高。这项研究通过为旨在可持续的植物种植和有效水管理的智能系统的开发和实施提供宝贵的见解,从而有助于智能农业技术的发展。这项研究的发现突出了整合高级控制算法和远程监控技术的潜力,以创造更可持续和资源的农业实践。
1. Lakhdari, A:无线能量传输系统的开发:生物医学领域的应用。(2020 年)。2. Heidarian, M. 和 Burgess, SJ(2020 年)。一种优化谐振线圈和电感链路能量传输的设计技术。IEEE 微波理论与技术学报,69 (1),399-408。3. Gosselin, B.(2011 年)。神经记录微系统的最新进展。传感器,11 (5),4572-4597。4. Tianjia Sun、Xiang Xie 和 Zhihua Wang:用于医疗微系统的无线能量传输。(2013 年)。5. Kiani, M. 和 Ghovanloo, M.(2012 年)。设计高性能感应电能传输链路的品质因数。IEEE 工业电子学报,60 (11),5292-5305。6. Mirbozorgi, SA (2015)。用于植入式医疗设备的高性能无线电源和数据传输接口。7. Kiani, M.、Jow, UM 和 Ghovanloo, M. (2011)。设计和优化 3 线圈感应链路以实现高效的无线电能传输。IEEE
摘要 提出了一种用于峰值电流模式 (PCM) 控制的降压型 DC-DC 转换器的精确可编程平均电感电流限制方法。利用 Gm-C 滤波器检测与电感串联的电流检测电阻上的压降。然后,通过电压-电流 (V2I) 转换器将压降转换为电流信号。转换后的电流信号叠加在误差放大器的输出上,以调节峰值电感电流。降压转换器采用 0.18 µ m BCD 工艺设计。对于 50 m Ω /25 m Ω 的检测电阻,电流限制值分别设计为 1 A/2 A。当等效负载电阻从 10 Ω 变为 2.5 Ω/1.67 Ω 时,仿真结果表明,对于 50 m Ω /25 m Ω 的检测电阻,平均电感电流分别从 500 mA 增加到 0.9 A/1.8 A。关键词:电流限制,平均电感电流反馈,Gm-C滤波器分类:集成电路(模拟)
这篇论文由 ScholarWorks@UARK 免费提供给您,供您开放访问。它已被 ScholarWorks@UARK 的授权管理员接受,并被纳入研究生论文和学位论文。如需更多信息,请联系 scholar@uark.edu、uarepos@uark.edu。
GaN 高开关速度导致的寄生电感 GaN 的使用频率高于老化功率 MOSFET 所能承受的频率,这使得寄生电感在电源转换电路中的劣化效应成为焦点 [1]。这种电感妨碍了 GaN 超快速开关能力的全部优势的发挥,同时降低了 EMI 产生。对于大约 80% 的电源转换器使用的半桥配置,寄生电感的两个主要来源是:(1) 由两个功率开关器件以及高频总线电容器形成的高频功率环路,以及 (2) 由栅极驱动器、功率器件和高频栅极驱动电容器形成的栅极驱动环路。共源电感 (CSI) 由环路电感中栅极环路和功率环路共有的部分定义。它由图 1 中的箭头指示。