一些设计挑战[18,19]。有源电感使用晶体管构建,因此电压摆幅低于无源电感,因为晶体管需要较大的电压余量。并且晶体管的非线性特性使有源电感的电感阻抗随偏置点而变化[20]。当有源电感工作在相对较大的电压摆幅下时,输出阻抗的变化很大。为了增加输出电压摆幅,做了一些其他的工作[21-23]。它们克服了阈值电压的限制,因此所需的电压余量降低了,但是晶体管非线性的影响仍然存在。为了使阻抗变化可接受,它们仅对输出电压摆幅提供有限的增加。
2.2 单端 LNA 设计(共源共栅电感源极衰减) 图 1 显示了一个单端 LNA,该电路结构利用连接到源极处的晶体管 M 1 的电感 (LS )(电感源极衰减)[4]。这种结构的优点是设计人员可以通过选择适当的电感来灵活地控制输入阻抗实部的值。此外,为了减少调谐输出和调谐输入之间的相互作用,使用了级联晶体管 M 2 。偏置电路由形成电流镜的晶体管 M 1 和 M 3 实现。选择 M 3 以获得偏置电路的最小功率开销。使用电感 L d 的原因是为了与输出负载产生谐振以获得最大的输出功率传输。此外,通过设计更宽的 W 2 来权衡共源增益和增加第 2 个晶体管 (M 2 ) 的寄生电容。此外,晶体管 M 2 有助于降低米勒效应 (C gd1 ) 以及 S 21 [4]。等效电流
在过去的十年中,单晶钻石(SCD)生长的显着技术进步导致了高质量SCD底物的商业产品,通常以尺寸的几个平方毫米的良好特定板的形式获得[1]。同时,此类板的成本已大大降低[2],这引发了重要的研发工作,旨在利用SCD的特性[3],热[4]和机械性能[5] [5]用于电子学中的各种应用[6],光(光(光环)[7-10],光学和光学技术[11] [11] [11] [11] [11] [11] [11] [11])[11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11]。高质量的SCD板是通过化学蒸气沉积(CVD)[13,14]或高压高温(HPHT)[15]技术生长的。记录示范最近产生的SCD底物直径为10 cm [16],但如今更典型的尺寸为1 mm – 10 mm,厚度为50μm -1 mm。基板以不同的“等级”类别提供(例如电子[6,17],光学[18]或机械[19])根据其杂质的程度,这表明底物性质已被遗忘,特别适合特定的应用区域。SCD的精确成型主要是使用激光切割和烧蚀技术以毫米尺度的目标维度进行的,具有几微米的精确性要求,例如切片钻石板或制造切割工具,用于转弯,敷料或铣削。微丝[41-47]和光栅[48,49])和光子学(例如用于耦合器[50-54]和谐振器[52,55-59])。激光处理也用于千分尺尺度的结构,例如复合折射率[20-23],埋入的波导[24-26]和微通道[27,28]。离子束蚀刻(IBE)可以有效地平滑并抛光SCD板[29,30],而聚焦的离子束(FIB)铣削已用于制造悬浮的结构[31-33],砧[34,35]和固体膜片[36-38]。尽管这些图案技术对于一组特定形状和设备最有效,但基于反应性离子蚀刻(RIE)制造方法是最常用的方法,用于广泛的应用,需要亚微米精度[39,40],例如微观典型(例如,与Rie相比
FM8502 是一款工作在电感电流临界模式的高精度降压型 LED 恒流驱动芯片,芯片内部集成 500V 功率开关且 具有 OVP 电压调节功能,可通过调节外置 OVP 电阻阻值来设置 Vovp 电压值,另外,芯片 ROVP 引脚带 Enable 功能,可兼容开关调色应用。 FM8502 内置了高精度的采样、补偿电路和高压 JFET 供电技术,无需启动电阻和 VCC 电容,使得系统外围十分简单,在实现高精度恒流控制的前提下,最大限度的节约了系统成本和体积,可 广泛应用于 LED 球泡灯、 LED 蜡烛灯、 LED 日光灯管及其它非隔离降压型 LED 照明驱动领域。
耦合模式 电感 电感 电磁反向散射 工作频率 125kHz – 134kHz 13.56MHz 860MHz – 960MHz 天线线圈 线圈偶极子 最大工作距离可达 1m 附近:可达 1m 近距离:可达 10cm
首先,我们来看看数字信号处理。传统上,航空电子和卫星电源应用与 28v 总线(或 14v 车载总线)相关,而后者又可在需要时转换为低压配电。由于控制系统和有效载荷的数字内容增加(包括可编程阵列和传感器的模拟数字 (ADC 或 DAC) 转换),该领域正在快速增长。新设计继续采用具有更高处理速度的 ASIC,要求用于去耦的多层陶瓷芯片电容器 (MLCC) 具有更低的寄生元件,即低等效串联电阻 (ESR) 和低等效串联电感 (ESL)。越接近核心 ASIC 或可编程阵列,ESL 的控制就越关键。由于电容器是 2 端子设备,因此基本 ESL 特性源自部件的几何形状 - 两个端子有效地定义了信号的电流环路,部件越大,环路越大,因此 ESL 也越大。解决这个问题的基本方法是使用“反向几何”低电感芯片电容器 (LICC),其端接在侧面,而不是部件的末端。在 2:1 纵横比的部件(例如 1206 尺寸)中,使用反向几何版本 0612 可将电感降低 2 倍(通常从 1nH 降低到 500pH),同时保持相同的电容/电压设计和相同的空间。通过使用更小的轮廓部件和更小的环路(0508 代替 0805、0306 代替 0603 等),仍然可以实现更低的电感,但这是以降低电容值为代价的 - 并且 ASIC 工作频率下的电容保持仍然是一项要求。因此,为了实现更快的速度,需要新的组件设计,其中电感组件可以与电容组件分离。有三种方法可以做到这一点 - 通过电感消除、通过非常小的信号环路以及通过最小化与 PCB 接地平面的电感耦合。电感消除的一个很好的例子是数字间电容器 (IDC)。这是一个反向
首先,我们来看看数字信号处理。传统上,航空电子和卫星电源应用与 28v 总线(或车载 14v)相关,而后者又在需要时转换为低压配电。由于控制系统和有效载荷的数字内容增加(包括可编程阵列和传感器的模拟数字 (ADC 或 DAC) 转换),该领域正在快速增长。新设计继续采用具有更高处理速度的 ASICS,要求用于去耦的多层陶瓷芯片电容器 (MLCC) 具有较低的寄生元件,即低等效串联电阻 (ESR) 和低等效串联电感 (ESL)。越接近核心 ASIC 或可编程阵列,ESL 的控制就越关键。由于电容器是 2 端设备,因此基本 ESL 特性来自部件的几何形状 - 两个端子有效地定义了信号的电流环路,部件越大,环路越大,因此 ESL 也越大。解决这个问题的基本方法是使用“反向几何”低电感芯片电容器 (LICC),其端接在侧面而不是部件的末端。在 2:1 长宽比部件(例如 1206 尺寸)中,使用反向几何版本 0612 将在相同电容/电压设计和相同空间占用的情况下将电感降低 2 倍(通常从 1nH 到 500pH)。通过使用较小轮廓的部件和较小的环路(0508 代替 0805、0306 代替 0603 等),仍然可以实现较低的电感,但这是以降低电容值为代价的 – 并且仍然要求在 ASIC 工作频率下保持电容。因此,为了实现更快的速度,需要新的组件设计,其中电感组件可以与电容组件分开。有三种方法可以实现这一点:通过电感消除、通过非常小的信号环路以及通过最小化与 PCB 接地平面的电感耦合。电感消除的一个很好的例子是数字间电容器 (IDC)。这是一种反向
无人管理的水下车辆(UUV)是水下勘探和维护的关键。自动驾驶水下车辆(AUV),其潜力减少了运营时间和环境影响,这使人们增加了兴趣。但是,他们面临着重要的技术挑战,尤其是在电源方面。这项研究重点是用于连续AUV操作的电感无线功率传递(IWPT),采用紧密耦合的分裂核心变压器(SCT),设计用于近场功率传递。提出了稳健的隔离和对准机制来克服海水环境的影响。具有SCT和RESONANT LLC电路的IWPT设备进行模拟并实验测试。有限元方法研究突出了将设备与海水环境隔离,尤其是在高频时的优势。LLC仿真和实验结果表明,电力传输的效率分别为93.2%和87.1%,最高为312W。但是,实验设备的全球效率下降到76.4%,突显了对电路设计优化的需求。
背景:目前,没有任何商用现货 (COTS) 电感材料或空心电感能够令人满意地满足未来海军电力和能源系统在功率处理、效率、体积效率和热升方面的需求。这一无可否认的结论不仅需要新材料,还需要一种新的超高频材料设计范例,以捕获 250 MHz 或更高的带宽。需要专注于开发用于电感的新型磁性材料,着眼于将应用扩展到高频变压器,以提供高 SWAP+C2(尺寸、重量和功率加上成本和冷却)和可靠的超高频应用电感。此外,截止频率和磁导率/磁化(电感饱和电流)具有反比关系,与尖晶石铁氧体和合金中观察到的众所周知的趋势一致(即 Snoek 关系)。然而,更宽的带宽(即更高的截止频率)是以更低的磁导率和磁化为代价的,这意味着更低的功率处理能力、更高的损耗因子和对 SWAP+C2 的妥协。然而,具有更高磁导率的样品
在系统级最小化环路电感是优化整体系统性能的关键杠杆。与基于串联单开关模块的解决方案相比,在单个封装内实现双向开关可降低三级系统中的寄生电感。PrimePACK 3+ 封装具有四个独立的模块内部母线,可同时实现低寄生电感和高载流能力。此概念的交错电源端子设计提供了降低整体系统电感的可能性。由于每个母线对形成带状线导体,因此杂散电感会减小。图 3 显示了三模块 (2:1) 相的模块布置和可能的直流母线结构。图 3A 的中心说明了 CC 模块的电源端子布局。