必须以正确的量添加到混合器或反应器中。最好,最实用的方法之一是质量流量测量。Micro Motion™Elite™峰性能Coriolis流量和密度计(图6)提供了高精度和宽的转下比,这是测量液体,浆液和气体的绝佳选择。,但最重要的方面是它测量质量的能力,而不是简单的体积流以及测量密度的能力。鉴于密度,温度和其他可能因素差异的潜力,这有助于确保添加正确量的成分
在电池管理系统(BMS)中,细胞平衡在减轻电池堆栈中锂离子(Li-ion)细胞中电荷状态(SOC)的不一致方面起着至关重要的作用。如果单元格无法正确平衡,则最弱的锂离子电池将永远是限制电池组可用容量的一种。已经提出了不同的细胞平衡策略,以平衡连接串联的细胞中不均匀的细胞SOC。但是,平衡效率和缓慢的SOC融合仍然是细胞平衡方法的关键问题。为了减轻这些挑战,在本文中提出了一种混合占空比平衡(H-DCB)技术,该技术结合了占空比平衡(DCB)和细胞对包装(CTP)平衡方法。引入了H桥电路的整合,以绕过选定的细胞并增强控制和监测单个单元的监测。随后,DC – DC转换器用于在H-DCB拓扑中执行CTP平衡,从而有效地将能量从选定的单元转移到电池组中,从而减少了平衡时间。为了验证所提出的方法的有效性,在MATLAB/SIMULINK软件中设计了96个串联连接电池的电池组均匀分布在十个模块中,以用于充电和放电操作,结果表明,与传统的DCB方法相比,提出的H-DCB方法具有更快的6.0 h的速度6.0 H。此外,在放电操作过程中,在实验设置中使用了一包四个串联的锂离子细胞,用于验证所提出的H-DCB方法。硬件实验的结果表明,SOC收敛是在〜400 s处达到的。
我们在产品的整个生命周期内提供电池支持,从最初的设计到认证、制造、管理分销和运输,以及最终的环境处置。每一步都需要丰富的经验和遵守相关法规,以确保完全的可靠性、安全性和环保性。
,我们使用C-AFM在200个电荷 - 释放循环后,从液体电解质(LE)电池的NMC阴极的二级粒子成像。它揭示了主要颗粒的有趣电导率结构以及它们在骑自行车过程中形成的裂纹。虽然主粒子的总体趋势要较低,但导电较近,但另一种效果会导致看似随机的电导率变化。局部C-AFM证明,某些主要颗粒可能由于裂缝而失去了与邻居的电气接触,并断开了连接。效果不可忽略,因为在几个谷物上的当前轮廓显示出数量级的差异,从而影响(减少)总电池的性能。
方便而聪明:•窃窃私语,安静,无缝操作。•用tahoma开关的精确百分比盲人控制。•USB-C快速充电以获得优化的充电体验。•可用的磁充电配件(单独出售)。•与Tahoma Switch&Apple HomeKit兼容。•与Zigbee无线太阳能电池板兼容(可用的学期2,2024)。•与Tahoma Switch兼容其他Zigbee 3.0品牌。
抽象背景由于过去十年的技术进步,电动汽车市场已迅速扩展,关键的推动力是开发具有更高能量密度,更快充电速度和寿命更长的高性能电池。建筑设备行业在电气化方面面临着独特的挑战,包括高功率需求,延长的运营时间以及最少的停机时间。为了应对这些挑战,沃尔沃建筑设备正在调查电池交换系统解决方案,该解决方案允许快速换台,减少停机时间和与机器的脱钩寿命。这项研究的目的是设计用于电池交换系统的电池组,同时回答以下研究问题:RQ1:在设计用于建筑设备的电池组时,电池模块,机架和辅助系统的哪种配置可实现最高的能量密度?rq2:设计电池模块,机架和辅助系统以实现用于施工设备的电池组的最高能量密度时,应考虑哪些因素?方法这个项目遵循Ulrich等人的有限版本。的(2019)产品开发过程,重点介绍了电池交换系统的概念开发和系统级设计。采用了一种归纳研究方法,从访谈,文献,文件和会议中收集了定性和定量数据,以对项目挑战产生整体理解。使用诸如前向和向后滚雪球之类的技术,使用多个数据库中的相关关键字进行了结构化文献审查。数据分析方法(包括对话分析)被用来构建和分析收集的数据,确保通过三角测量确保有效性和可靠性,并与沃尔沃的专家进行交叉引用。实证研究是通过基准测试和案例研究进行的,从内部文档和与产品开发人员进行沟通的规格和定性见解提供了定量数据。这些发现构成了迭代概念生成过程,强调了在早期阶段探索各种可能性的重要性。结论设计过程涉及评估先前的电池组解决方案,这些解决方案在预定义的约束中工作,例如使用特定的外壳,内部开发的电池模块,辅助组件,同时满足一组利益相关者的需求。由于电池组有新的内部布局,因此也开发了一些支持电池模块的辅助组件和一个支撑电池模块的机架。这导致了一个概念电池组,从理论上讲,其能量密度比以前的电池组解决方案高30%。提出的解决方案使沃尔沃建筑设备能够通过在给定约束内最大化存储容量来提供更长的运行时的机器和提高生产率。关键字:电池交换,电池组,产品开发,概念生成,建筑设备,设计,电池模块布局。
理想情况下,消除焊接的夹具设计将很快开发,这与预期的过渡到无线电池管理系统(BMS)一致。通过为每个单元格配备无线芯片,OEM可以访问详细的充电数据以进行预测性维护。与当前的焊接电池连接不同,这需要破坏性的流程进行细胞更换,夹子互连提供了单细胞可用性。他们使OEM能够替换单个单元,从而将包装的成本从最高$ 20K降低到单个细胞更换的$ 200。
2。安全和代码合规性,以确保安全且NEC符合NEC的操作,正确额定的断开手段,过电流保护设备(OCPDS)和适合HV电池组的组合器。根据国家电气代码(2023 ED)第706.15(a)条的ESS系统必须具有断开连接的手段:“应提供均值与所有接线系统(包括其他电源系统,利用设备及其相关的场所)断开ESS的均值。”本节还描述了上述断开连接的允许位置:•“(1)位于ESS内的(1)位于视线内,距离ESS内的3 m(10 ft)之内,在ESS•(3)的情况下,不在ESS的视线,断开的含义,均值或封闭的封闭方式,或者在隔离的范围内,均应符合110.25的范围。由于包含了积分,双极,可锁定连接,贝斯将符合此要求(图2)在电池管理单元(BMU)内。此设备断开电池系统的正电池输出导体和负电池输出导体。
考虑到冷却液的各种流速,配备了圆柱形锂离子电池配备的电池组,用于冷却电池组。部分浸入方法用于减少电池组的总重量,从而增加功率密度。在细胞之间考虑了2 mm的微小间隙为高细胞密度。评估压降和温度分布以找到细胞的最佳条件。评估冷却液的不同流速以及电池的热量产生速率,以达到最低压力下降的温度目标。结果表明,在快速充电(15 kW)期间,考虑到21.5 lpm的冷却液流速,在电池组中,在热点温度为51°C的同时,可以在电池组中达到33°C的平均温度。对于3kW的热量产生速率,可以使用2.15 LPM流速来达到33.8°C的平均温度。