根据腐蚀标准要求,合适的涂层:• Alusi® (AS) (AS150) ➔ 推荐解决方案• 裸钢 – 可以提出单面电镀锌解决方案(不与冷却液接触的一侧的锌保护)• Aluzinc® (AZ)
模块 1 : 4 串电池组输入端, BAT- 为电池组最低端的负极, VC1 为第一节电池正端, VC2 为第 二节电池正端, VC3 为第三节电池正端, BAT+ 为第四节电池正端(即电池组的最高极)。 CW1243 没有上电顺序要求,但建议从低节到高节依次上电,避免出现接错,反接等现象。注意 BAT- , BAT+ 在充放电过程中会有大电流,接在 BAT- , BAT+ 上的导线最好能够足够粗。 模块 2 : 电池组电压进芯片端滤波电路,电容尽量靠近芯片。 模块 3 : R SENSE 电阻,通过检测其上的电压值,计算放电过程中的电流。 模块 4 : 103AT NTC 电阻( 3435 )。 模块 5 : 充放电负端。 模块 6 : 充电正端,二极管是为防止充电器反接,如不需要,可以拆掉,用导线将两端短接。 模块 7 : P+ , P- 放电端口的稳压,续流二极管以及电容。 模块 8 : CIT 电容,控制放电过流 1 ,过流 2 延时时间电容,可以根据需要自行更换。 模块 9 : 充放电高温保护匹配电阻。 模块 10 : VINI 处滤波电路 R 以及 C ,可以适当的调节过流保护延迟时间,同时提高电流检测 精度。
所有保修索赔均由 Proterra 自行决定管理和处理。可保修缺陷可通过软件更新和/或用相同或等效替代品更换零件和组件来解决,包括可用能量等于或大于原始电池组的工厂翻新组件。如果由于可用能量而更换电池组,Proterra 将提供具有足够可用能量的替代品,以满足原始保修中规定的范围。Proterra 保留自行决定使用性能相同或更高的最新型号升级零件或组件的权利。
里程焦虑和缺乏足够的快速充电途径已被证明是电动汽车 (EV) 普及的重要障碍。虽然已经开发出许多快速充电 EV 电池的技术(基于模型和无模型),但它们都集中在单个锂离子电池上。电池组的扩展很少,通常考虑简化架构(例如串联)以方便建模。计算方面的考虑也将快速充电模拟限制在小型电池组,例如四个电池(串联和并联电池)。因此,在本文中,我们采用基于强化学习 (RL) 的无模型方法来快速充电大型电池组(包含 444 个电池)。每个电池都由等效电路模型和二阶集总热模型表征,以模拟电池行为。在训练底层 RL 之后,开发的模型将易于实现且计算复杂度低。具体来说,我们使用近端策略优化 (PPO) 深度 RL 作为训练算法。 RL 的训练方式是将快速充电造成的容量损失降至最低。电池组的最高电池表面温度与电池组的充电状态一起被视为 RL 状态。最后,在详细的案例研究中,将结果与恒流-恒压 (CC-CV) 方法进行比较,并展示了基于 RL 的方法的卓越性能。我们提出的 PPO 模型可以像具有 5C 恒定阶段的 CC-CV 一样快速地为电池充电,同时将温度保持在与具有 4C 恒定阶段的 CC-CV 一样低的水平。
· 用于模拟的材料疲劳数据 · 涂层、隔膜和袋复合材料的压缩性 · 涂层电极的弯曲刚度 · 电池箔、隔膜和袋复合材料的拉伸强度 · 焊缝和粘合处的接头质量 · 涂层的硬度和划痕性能 · 电极涂层的附着强度和质量 · 涂层表面的摩擦系数 · 隔膜和袋箔的抗穿刺性 · 温度或介质等环境条件下的材料特性
本手册中包含的信息旨在帮助您使用 Rogers 的弹性材料解决方案进行设计。它不旨在也不会产生任何明示或暗示的保证,包括对适销性或特定用途适用性的任何保证,或用户将为特定目的实现本手册中显示的结果。用户应确定 Rogers 的弹性材料解决方案是否适用于每种应用。Rogers、BISCO、DeWAL、PORON、PORON EVExtend 和 ProCell 徽标、AquaPro、BISCO、DeWAL、PORON、PORON EVExtend 和 ProCell 是 Rogers Corporation 或其子公司之一的商标。© 2023 & 2024 Rogers Corporation。保留所有权利。印刷于美国 0624-0.75,出版号 #180-392
可再生能源转型需要储能技术来实现电网平衡和运输。锂离子电池已被广泛用于这些应用,但由于地缘政治紧张局势导致的供应风险促使人们寻找不太依赖关键原材料的替代化学方法。由于钠的相对丰富及其制造工艺与锂离子电池相似,钠离子电池作为有前途的后锂化学技术而备受关注。这项工作估算了通过多物理场建模优化的用于能源或电力应用的电池生产钠离子电池组的成本。这项研究复制了 COMSOL Multiphysics® 文献中袋式钠离子电池的多物理场模型。该模型确定了在 0.1C 至 10C 放电率下电池中使用的最佳活性材料,以最大化能量密度。然后使用阿贡国家实验室的电池性能和成本 (BatPaC) 模型确定由优化电池生产的电池组的成本,该模型考虑了材料和制造成本。优化结果表明,能量电池具有更厚的电极和更低的孔隙率(0.1C 时阳极厚度为 217 μm,孔隙率 0.11,阴极厚度为 237 μm,孔隙率 0.10),从而使单位质量的活性物质含量最大化。动力电池具有更薄的电极和更大的孔隙率,以最大限度地降低电阻(10C 时阳极厚度为 58 μm,孔隙率 0.32,阴极厚度为 63 μm,孔隙率 0.31),从而减少大电流下的能量损失。此外,我们比较了钠离子电池能量应用和动力应用的计算生产成本,强调了影响价格的重要参数。该模型观察到,从能量电池过渡到动力电池时,每千瓦时总材料成本增加了 26.42%。该模型还可以通过考虑不同形式的具有不同阴极和阳极化学性质的钠离子电池及其在不同用例中的应用来完善。
3)保护重置模式。电池组或电池的收费保护时,电压返回到过度充电的重置电压值,并且电流或过度放电保护会自动休息。4)电池平衡功能。根据每个单元的电压,被动放电平衡方法执行平衡控制。5)运行历史事件存储功能。6)上部计算机软件控制功能使您可以保护参数,例如在电流,温度和温度下电流过度,放电,充电和放电等参数。设置参数,例如容量,睡眠,平衡和存储。7)RS485,RS232通信功能,带有屏幕监视显示。8)可以通信功能,采用孤立的通信并支持自动地址编码或地址拨号功能。
最近,电动汽车的传播一直在随着燃油效率和各个国家通过减少CO 2排放而采用的排放控制政策的加速。到2035年,电动汽车的销售比率预计将显着增加到约88%,这是当前水平的五倍以上。使用电池电动汽车(BEV)预计约为58%,汽车制造商一直在进一步加速BEV的发展。同时,BEV在里程和快速充电时间方面存在问题,这在很大程度上取决于电池组的性能。为了解决这些问题,已经采取了积极的努力来开发可以应对较高能量密度和电流的电池组,以实现较小的空间和更高的容量,同时提高安全性。为了提高电池组的性能,连接电池与功能部件的连接零件也起着关键作用。他们有望提供有助于缩小和节省空间的功能,应对更高的电流以及提高安全性。