a) 环境温度:控制测量表明,环境温度对穿越时间测试结果的影响很小。根据用于降低输入浪涌电流的拓扑结构,环境温度会对电压骤降测试后出现的峰值电流产生重大影响。因此,测试是在 25°C 和 +60°C 的环境温度下进行的。假设半导体加工设备从不在低于 +25°C 的温度下使用。虽然电源本身规定温度低至 -40°C,但不会在如此低的温度下进行测试。
半导体技术不断向微米和亚微米尺度发展,从而提高了器件密度并降低了功耗。许多物理现象(如自热或电流泄漏)在这样的尺度下变得非常重要,而绘制电流密度图以揭示这些特征对于现代电子学的发展具有决定性作用。然而,先进的非侵入式技术要么灵敏度低,要么空间分辨率差,并且仅限于二维空间映射。在这里,我们使用金刚石中的近表面氮空位中心来探测预开发中的多层集成电路中电流产生的奥斯特场。我们展示了电流密度三维分量的重建,其幅度低至约 ≈ 10 μA/μm 2
摘要 - 在此贡献中分析了经受闪电般的电流冲动的电导性织物样本。多物理模拟用于计算流经材料样品的闪电样电流产生的温度分布。进行了脱钩的电磁(EM)和热模拟进行分析,并在论文中进行了解释。还详细介绍了表示当前脉冲测试中呈现能量的缩放因子计算。数值结果提出了与文献中报道的实验测试一致的模式,并代表了现象见解的附加工具。
TEPCE 是一颗 3U 立方体卫星,旨在探索使用电动力推进航天器的可行性。推进力是通过沿着连接两个航天器末端质量的长线(称为系绳)传导电流产生的。当航天器沿其轨道移动时,地球磁场会在磁场和系绳中的电子之间产生洛伦兹力,从而为航天器提供推力。它不需要化学或其他传统燃料源。TEPCE 是首批自给式电动力推进航天器之一。TEPCE 于 2019 年 6 月 25 日搭载 SpaceX Falcon Heavy 火箭发射。这是一艘成功的航天器,展示了可使航天器利用电动力学原理进行机动的机械和电气系统。
7. Mordor Intelligence,“量子传感器市场规模与份额分析 - 增长趋势与预测 (2023 - 2028)”,2023 年。[在线]。网址:https://www.mordorintelligence.com/industry-reports/quantum-sensors- market#:~:text=The%20Quantum%20Sensors%20Market%20size,period%20(2023%2D2028)。8. The Data City,“英国量子计算行业”,2024 年。[在线]。网址:https://thedatacity.com/rtics/quantum- economy-rtic0051/。9. McKinsey,“塑造量子通信和量子传感的长跑”,2021 年。[在线]。可访问网址:https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/shaping-the-long-race-in-quantum- communication-and-quantum-sensing。10. D. Cohen,“脑磁图:由阿尔法节律电流产生的磁场的证据”,《科学》,第 61 卷,第 3843 期,第 784-786 页,1968 年。
罗盘传感器通过检测地球磁场来确定车辆的方向。一个励磁线圈和两个垂直的传感线圈缠绕在环形磁芯磁铁的中心。当交流电压施加到励磁线圈时,磁中心的磁通量会发生变化,并通过传感线圈中的电磁感应产生电压。当没有外部磁场时,磁通量变化会产生对称波形。当外部磁场 H 以直角施加到输出线圈 Vx 时,它会叠加在磁化电流产生的磁场上,磁通量会发生变化变得不对称(见图 7)。输出电压与差值的变化率成比例。当外部磁场 H 以一定角度 φ 施加时,可以感测输出电压 Vx 和 Vy,并使用如下所示的关系计算车辆方向:
在上一课中,您已经了解了导线中的稳定电流会产生稳定磁场。法拉第最初(错误地)认为稳定磁场可以产生电流。他在磁感应电流方面的一些研究使用了与图 19.1 类似的装置。左侧线圈中的电流产生集中在铁环中的磁场。右侧线圈连接到检流计 G,检流计可以指示该电路中是否存在感应电流。观察到,对于稳定电流,G 没有偏转,但是当左侧电路中的开关 S 闭合时,检流计会显示片刻的偏转。同样,当开关 S 打开时,会记录到瞬时偏转,但方向相反。这意味着只有当左侧电路中的电流引起的磁场发生变化时才会感生电流。
已成功用于有效操控磁化,从而产生了最近的基于 STT 的商业化磁存储器解决方案。 [1] 自旋轨道扭矩 (SOT) 利用高自旋霍尔效应 (SHE) 材料中的平面电荷电流产生的平面外自旋电流,可以实现更节能的磁化操控,并且正在达到商业成熟度。 [2–4] 到目前为止,已经研究了各种高自旋轨道耦合 (SOC) 材料,包括重金属、拓扑绝缘体 (TI) [5–7] 以及最近的拓扑半金属 (TSM) [8–11],以最大化它们的自旋霍尔角 θ SH = | J s | / | J c |,这是它们将电荷电流密度 J c 转换为自旋电流密度 J s 的效率的量度。此外,已经研究了高 SHE 和 FM 材料层之间的界面工程,以最大化跨界面的自旋透明度 T int。 [12–19] 高效 SOT 自旋电子器件的关键挑战是最大化 SOT 效率,ξ= θ SH · T int。[20]
摘要 - 电流镜是在Mi-Croelectronics中广泛使用的电路,尤其是在模拟IC设计中。它们作为原理是输出节点处参考电流的复制品的生成。本文旨在对NMOS电流镜的不同拓扑,特别是简单的电流镜,cascode电流镜和Wilson Current Mirror进行比较研究。我们分析了它们有关晶体管的通道宽度(W)和工作温度的电气特征。Cadence Virtuoso被用作模拟工具,目标过程技术为130 nm。结果,我们发现,通过增加晶体管的W,最小输出电压会降低。此外,我们注意到三个拓扑中的温度比输出电流产生的影响。最后,可以得出结论,当前的镜子遵循了主要文献的预期模式,并朝着代表命令MOSFET晶体管的主要方程式的方向融合。索引项 - cascode电流镜,简单电流镜,Wilson Current Mirror。