RGY的石墨烯功率模块在Ener Gy Storage Technology的最前沿。堤防石墨烯的高表面区域允许在紧凑的外形以外的储能能力。是什么使我们的石墨烯电池模块与众不同的是它们出色的散热功能。基于石墨烯的模块有效地消散了充电和放电期间产生的热量,以应对传统锂离子电池的主要挑战之一。我们的石墨烯电池比其他类型的电池更安全,更高效,寿命更长。与标准电池化学储存能量的标准电池不同,薄荷能石墨烯超级电容器可以静电存储能量。用于充电常规电池的化学反应缓慢工作,并最终导致电极材料故障,我们的超级电容器不同。它可以多次充电而不会磨损。
BRANSON 焊接系统设计使用寿命长。它们符合“最先进”的科学技术,并在交付前对所有保证的功能进行单独检查。它们的电气系统符合适用的标准和规范(请参阅第 2.12 章)。BRANSON Ultrasonics 进行产品和市场研究,以确保其产品的进一步发展和持续改进。如果尽管采取了所有预防措施,仍出现故障或失效,请联系 BRANSON 客户服务部门。我们保证将立即采取适当措施修复损坏。
LGA80D 和 LGA50D 的 LGA 系列占地 1 英寸(25.4 毫米)x 0.5 英寸(12.5 毫米),代表了业内最高的额定电流密度。这些创新设备提供两个独立输出,可以配置为单个输出或 2 个完全独立控制的输出。LGA80D 可以配置为两个 40A 输出或一个 80A 输出,而 LGA50D 可以配置为两个 25A 输出或一个 50A 输出。还可以通过并联设备来产生更高的额定电流轨:例如,通过并联四个 LGA80D 设备,最多可以提供 320 安培的电流作为单个电源轨。
稿件收到日期:2019 年 5 月 31 日;修订日期:2019 年 9 月 15 日;接受日期:2019 年 9 月 24 日。出版日期:2019 年 10 月 15 日;当前版本日期:2020 年 2 月 3 日。这项工作得到了中国国家自然科学基金资助,资助编号为 U1537208。副主编 Jason Neely 推荐出版。(通讯作者:曹立强;张国旗;Braham Ferreira。)F. Hou 就职于中国科学院微电子研究所,北京 100029,中国,代尔夫特理工大学微电子系,2628 CT 代尔夫特,荷兰,以及国家先进封装中心,无锡 214135,中国(电子邮件:houfengze@ime.ac.cn)。 W. Wang 就职于深圳宽带隙半导体研究院 (WinS),深圳 518055,中国 (电子邮件:wenbo.wang@iwins.org)。L. Cao、J. Li 和 M. Su 就职于中国科学院微电子研究所,北京 100029,中国,同时也就职于国家先进封装中心,无锡 214135,中国 (电子邮件:caoliqiang@ime.ac.cn;lijun@ime.ac.cn;sumeiying@ime.ac.cn)。T. Lin 就职于国家先进封装中心,无锡 214135,中国 (电子邮件:tingyulin@ncap-cn.com)。G. Zhang 就职于代尔夫特理工大学微电子系,代尔夫特 2628 CT,荷兰 (电子邮件:gqzhang@tudelft.nl)。 B. Ferreira 曾就职于荷兰代尔夫特理工大学电气可持续能源系,邮编 2628 CT 代尔夫特。他目前就职于荷兰特温特大学电信工程系,邮编 7522 NB 恩斯赫德(电子邮件:jaferreira@utwente.nl)。本文中一个或多个图片的彩色版本可在线获取,网址为 http://ieeexplore.ieee.org。数字对象标识符 10.1109/JESTPE.2019.2947645
为了在功率模块中实现最佳的热性能,必须将它们安装到散热器上,以有效地消散由半导体设备产生的热量,并防止连接温度超过安全限制。热接口材料(TIM)通常用于在模块的底板和散热器之间建立适当的接触。但是,正确应用热油脂和电源模块在散热器上的安装对于确保两个组件之间有效的热传递至关重要。本申请说明提供了选择适当的热接口材料的指导,以及将热油脂涂在模块底板或散热器上的说明,并将电源模块安装到散热器上。通过遵守这些准则,可以实现功率模块的最佳热性能。
在系统级最小化环路电感是优化整体系统性能的关键杠杆。与基于串联单开关模块的解决方案相比,在单个封装内实现双向开关可降低三级系统中的寄生电感。PrimePACK 3+ 封装具有四个独立的模块内部母线,可同时实现低寄生电感和高载流能力。此概念的交错电源端子设计提供了降低整体系统电感的可能性。由于每个母线对形成带状线导体,因此杂散电感会减小。图 3 显示了三模块 (2:1) 相的模块布置和可能的直流母线结构。图 3A 的中心说明了 CC 模块的电源端子布局。
噪声是在线测量和状态监测的一个重要方面。然而,性能下降发展非常缓慢,因此可以实现非常高的积分时间。此外,S 参数的目标频率(大部分高于 100 MHz)与 PM 功能信号带宽(上升时间低于 10 ns 时限制为几十 MHz)之间的比率足够高,可以使用慢速、非常窄的带通 IF 滤波器,从而抑制大部分不相关的噪声。此外,这还将使使用部署现场状态监测所必需的低成本仪器成为可能。事实上,使用 NanoVNA V2 [15] 进行的初步测试与使用高端 ZVA24 获得的测试结果相符。该仪器可以留在现场进行实时状态监测,也可以在计划的定期维护期间连接到系统以进行 SoH 评估。
y 每个电源模块均采用专用的隔离控制:这种设计选择增强了系统的整体可靠性,使每个电源模块都能够按照其控制逻辑独立运行。 y 通过继电器自隔离电源模块:发生故障时,受影响的电源模块可以自我隔离,以防止问题蔓延,从而确保其余运行核心的电源连续供电。 y 连续工作固态静态旁路开关:使旁线路发挥最大性能。 y 热服务和热插拔静态旁路和电源模块:便于维护和升级,无需系统停机,直接有助于提高运行可用性,降低意外停机风险。 y 增强的诊断工具(波形捕获、历史记录):能够在潜在问题影响系统性能之前对其进行预先识别和解决,深入了解系统运行状况并预防故障。
绝缘栅双极晶体管 (IGBT) 电源模块是常用于切换高电压和电流的设备。使用和环境条件可能会导致这些电源模块随着时间的推移而性能下降,而这一渐进过程最终可能导致设备发生灾难性故障。这一性能下降过程可能会导致一些与电源模块健康状况相关的早期性能症状,从而可以检测出 IGBT 模块的可靠性下降。测试可用于加速这一过程,从而可以快速确定是否可以表征设备可靠性的特定下降。在本研究中,同时对多个电源模块进行热循环,以评估热循环对电源模块性能下降的影响。使用高温热电偶从每个电源模块内部进行现场温度监测。执行设备成像和特性分析以及温度数据分析,以评估电源模块内的故障模式和机制。虽然实验旨在评估热循环对芯片连接的潜在损坏影响,但结果表明引线键合性能下降是限制寿命的故障机制。