摘要:这项研究的重点是通过通过静电纺丝过程将银纳米颗粒(AGNP)掺入聚乙烯二烯氟化物(PVDF)纳米纤维中来制备复合纳米蛋白酶。对与PVDF相关的研究进行了简短综述。PVDF以其生物相容性和压电特性而闻名。由于已经证明生物组织中的电信号与治疗应用有关,因此研究了AGNP向PVDF添加对PVDF对压电性的影响,因为AGNP的能力增加了压电信号,以及提供抗细菌特性。通过扫描电子显微镜,能量分散性X射线光谱和傅立叶变换红外光谱法对制备样品进行表征。此外,使用细胞毒性测定法和对抗菌活性的评估检查了复合材料的生物学活性。获得的结果表明,与溶液铸造的样品相比,已经通过静电纺丝过程改进了PVDF纳米纤维进一步增强了压电性(结晶β-相分数),但仅具有AGNPS/PVDF浓度最高0.3%;纳米颗粒的进一步增加导致β相还原。细胞毒性测定显示PVDF/AGNPS纳米纤维对MDA-MB-231乳腺癌细胞系的有希望的作用,这是在对健康的MRC-5细胞系中显示出的无毒性。由于Ag含量,PVDF/AGNPS纳米纤维的抗菌作用表现出有前途的抗菌活性和金黄色葡萄球菌的抗菌活性。抗癌活性,结合纳米纤维的电特性,为癌症治疗开发的智能多功能材料提供了新的可能性。
Terahertz成像为早期发现皮肤癌提供了巨大的潜力。这项研究引入了一种超物质单位细胞,该单元旨在在Terahertz(THZ)带中进行非侵入性接触性皮肤癌检测。传感器仅依赖于反射系数响应,从而在不需要复杂的信号处理的情况下对组织性质的细微变化提供了高度的敏感性。这种简单性可能会导致早期癌症检测的经济高效且直接实施。使用代表各种皮肤类型的3D模型进行模拟,包括正常皮肤,基底细胞癌(BCC)和黑色素瘤。使用双Debye模型确定样品的介电特性。模拟表明,超材料设计以1.15 THz的特定频率表现出双负材料特性。在皮肤接触和检测恶性肿瘤后,反射系数显示出向较低频率的转移。值得注意的是,黑色素瘤样品表现出最显着的转移,表明与BCC相比,癌症形式更严重。此外,观察到正常皮肤和恶性皮肤之间的共振频率的差异随样品的厚度增加。传感器在检测癌症厚度方面表现出很高的灵敏度,对于基底细胞癌(BCC)的灵敏度为9.25 GHz/µm,黑色素瘤的灵敏度为10.2 GHz/µm。这些发现强调了传感器在最早阶段检测皮肤癌的能力,无论其严重程度如何。此外,线性回归分析表明,BCC和黑色素瘤的共振频率与癌症厚度变化之间存在牢固的相关性,R2值分别为0.9948和0.9947。
a)应向其通信的作者:ll886@cornell.edu摘要用于毫米波电源应用,GAN高电子移动晶体管(HEMTS)通常在高纯度半胰岛的C轴c-轴4H-SIC 4H-SIC substrate上表现出现。对于这些各向异性六边形材料,微带和共浮标互连的设计和建模都需要详细了解普通介电常数ε⊥和非凡的介电常数ε||分别垂直于c轴。但是,常规的介电特性技术使得很难测量ε||单独或分开ε||来自ε⊥。结果,ε||几乎没有数据,特别是在毫米波频率下。这项工作演示了表征ε||的技术使用底物集成的波导(SIWS)或SIW谐振器的4H SIC。测得的ε||从110 GHz到170 GHz的七个SIW和11个谐振器中,在10.2的±1%以内。因为可以将SIW和谐振器与Hemts和其他设备一起在相同的SIC基板上制造,因此可以在磁力上方便地测量它们,以进行精确的材料磁盘相关性。这种介电常数技术可以扩展到其他频率,材料和方向。高纯度半胰岛六轴六边形4H SIC 1通常用作通过微带传输线(微一起)或接地的Coplanar saveguides(GCPWS)相互连接的毫米波GAN高电动型晶体管(HEMTS)的底物。1)。尽管“静态”ε⊥和ε||这需要精确了解SIC在毫米波频率下的电渗透率,以准确预测沿传输线的波浪的传播延迟和衰减。例如,在微带或GCPW上行进的准电磁(准TEM)波由普通介电常数ε⊥和非凡的介电常数ε||控制。分别垂直和平行于C轴(图
综合超声和电阻抗断层扫描用于提高肾结石检测率 KR Farnham 1、EK Murphy 1 和 RJ Halter 1,2 1 塞耶工程学院,2 盖泽尔医学院,达特茅斯学院,新罕布什尔州汉诺威 引言 长期处于微重力环境中会导致脱水、淤滞和骨质脱矿,从而引发肾结石,对宇航员的健康和幸福构成严重威胁 [1]。尽早发现肾结石的形成是有益的,因为较小的结石更容易通过,而碎石术等非侵入性治疗需要先使用高对比度成像(如荧光透视、X 射线)定位结石。超声波是目前在太空中使用的成像系统,但仅用超声波检测小结石是一项具有挑战性的任务。执行深空任务的宇航员需要能够对肾结石等疾病进行成像和治疗,而无需依赖额外的造影剂或远程医疗支持,因为航天器的限制和距离使这些解决方案不可行 [2]。通过对生物电特性进行成像可以获得明显更高的对比度,因为这些特性对细胞内容、组织类型和病理很敏感,从而可以检测软组织内的结石。电阻抗断层扫描 (EIT) 是一种资源消耗少、非侵入性、非电离的技术,可产生这些电特性的图像,并能够检测一系列与空间相关的疾病(如肾结石、组织损伤、肌肉萎缩、胸腔功能、癌症存在) [3]。通过结合超声波和 EIT(US-EIT),我们可以构建高对比度图像,而无需额外的设备或专业知识,为宇航员提供一种易于使用的工具,以便在长期任务中有效监测他们的健康状况。
目的 据估计,约 10% 的中风患者会发生自发性脑内出血,且相关死亡率很高。可快速无创检测出血性中风的便携式诊断技术可避免不必要的患者护理延误,并有助于快速对缺血性中风和出血性中风患者进行分类。因此,作者旨在开发一种快速便携式涡流阻尼 (ECD) 出血性中风传感器,用于现场诊断出血性中风。方法 构建了一种具有微特斯拉级磁场强度的三线圈 ECD 传感器。开发了 16 个与活体脑组织电特性相同的明胶脑模型,并将其放置在幻影头骨复制品内,将盐水稀释至血液电导率并放置在脑内以模拟出血。ECD 传感器用于检测台式模型上的模拟出血。数据被保存并绘制为过滤热图以表示病变位置。进行扫描的人员不知道出血位置,传感器围绕头骨模型切向旋转以定位血液。数据还用于使用 MATLAB 软件创建热图图像。结果该传感器便携(最大直径 11.4 厘米)、紧凑,制造成本约为 100 美元。扫描时间为 2.43 分钟,病变的热图图像几乎实时生成。ECD 传感器在所有(n = 16)台式实验中准确预测了模拟出血的位置,并具有出色的空间分辨率。结论台式实验证明了 ECD 传感器用于快速颅内出血性中风诊断的概念验证。未来有必要对活体人类参与者进行研究,以充分确定从本研究中得出的可行性结果。
抽象聚合物纳米复合材料(PNC)由于其在储能,电子,生物传感,药物输送,化妆品和包装行业中的应用而吸引了巨大的科学和技术兴趣。纳米材料(血小板,纤维,球体,晶须,杆)构成了这种PNC。聚合物基质中无机纳米材料的分散程度以及纳米材料的结构化排列是纳米复合材料总体性能的一些关键因素。为此,纳米材料的表面功能化决定了其在聚合物基质中的分散状态。用于储能和电子产品,这些纳米材料通常用于其介电特性以增强设备应用的性能。尽管已经报道了有关纳米材料表面修饰的几次评论,但目前缺乏与聚合物介质有关的纳米材料表面功能化的综述。本综述总结了重要的金属氧化物介电纳米材料的表面修饰的最新发展,包括二氧化硅(SIO 2),二氧化钛(TIO 2),钛盐(Batio 3)(Batio 3)(Batio 3)和氧化铝(Al 2 O 3)(Al 2 O 3),例如化学药品,例如silanes,silanes,silanes,silanic,phosphonic,phosphonic,phosphonic and phosphicam and phosphicam and phosphonic and phosphonic and phosphicam and phosphonic and phosphonic and phosphonic。我们报告了纳米材料的化学修饰对纳米复合材料的介电性能(介电常数,分解强度和能量密度)的影响。除了使新手和专家在聚合物介电纳米复合材料的领域加快速度外,此综述还将作为选择适当化学剂的智力资源,用于将纳米材料功能化,以在特定聚合物矩阵中使用,从而潜在地调整了纳米复合材料的精细性能。
背景:经颅直流电刺激 (tDCS) 是一种很有前途的工具,可用于增强治疗效果,例如在治疗中风后。所获得的刺激效果表现出较高的受试者间差异性,这主要是由感应电场 (EF) 的扰动驱动的。由于萎缩或病变等解剖变化,衰老大脑中的差异会进一步增大。通过基于计算机的个性化 EF 模拟来告知 tDCS 协议是减轻这种差异的一种建议措施。目标:虽然在模拟研究中,大脑解剖结构(特别是萎缩以及中风病变)被认为对 EF 有影响,但白质病变 (WML) 导致的白质电特性变化的不确定性的影响尚未量化。方法:进行了一项团体模拟研究,将 88 名受试者分为四组,每组病变负荷不断增加。由于缺乏有关 WML 电导率的信息,因此在为病变组织选择任意电导率值时,采用不确定性分析来量化模拟中的变异性。结果:WML 对 EF 方差的贡献平均仅为其他建模组织贡献的十分之一到千分之一。虽然与低病变负荷受试者相比,高病变负荷受试者的 WML 贡献显著增加(p≪.01),通常增加 10 倍以上,但 EF 的总方差并没有随着病变负荷而变化。结论:我们的结果表明,WML 不会全局扰乱 EF,因此在对低到中等病变负荷的受试者进行建模时可以将其省略。但是,对于高病变负荷受试者,省略 WML 可能会导致病变组织附近的局部 EF 估计不太稳健。我们的结果有助于精确建模 tDCS 以进行治疗计划。
* 通讯作者。电话 + 7 921 786 18 03;电子邮件:agkolosko@mail.ru 摘要 开发了一种用于记录和模拟复杂场发射实验的方法。该方法包括处理三种类型的数据流:场阴极电特性数据(电压和电流脉冲)、场发射投影仪数据(辉光图案)和飞行时间质谱仪数据(测量室中挥发性产物的质谱)。LabView 软件环境实现了一种同步再现多通道实验数据的算法,并可以实时处理这些数据。该程序有一套内置的软件工具,可以实现功能并多次重复实验,在指定的时间点暂停,以及在模拟中更改时间流速。通过研究基于碳纳米管的纳米复合场阴极的场发射的例子证明了该方法的能力。关键词 碳纳米管;场发射;多通道数据收集;在线处理;实验模拟。 © AG Kolosko, VS Chernova, SV Filippov, EO Popov, 2020 简介 获取、存储和处理实验数据的方法是实验物理学不可或缺的一部分。这些方法随着计算机和测量设备的发展而不断发展。如今,高速记录和数据记录手段可以接收大量信息。因此,例如,使用放射性粒子传感器的高速记录来研究热核反应堆(ITER)等离子体中发生的过程 [1]。另一方面,现代计算系统允许在线数据处理,将记录的信息量减少了几个数量级。在线处理还允许控制实验系统随时间和实验条件变化时的行为,例如,记录场发射器(电流脉冲)响应的幅度,电压脉冲幅度急剧增加 [2]。本文描述的场发射实验是一类特殊的实验,其实施需要创建真空
摘要 为了开发可靠的高速封装,倒装芯片工艺中使用的底部填充材料的特性分析变得越来越重要。底部填充材料通常是一种环氧树脂基材料,可为封装上的集成电路 (IC) 提供热和结构优势。由于如此多的输入和输出 (IO) 彼此靠近,封装上的集成电路可能会出现意外的信号和电源完整性问题。此外,芯片封装只能支持最高频率的信号,在此频率下噪声耦合(例如串扰、开关噪声等)会导致系统故障。垂直互连(例如通孔和焊料凸块)是噪声耦合的主要来源。在每个信号网络之间插入接地参考是不切实际的。对于焊料凸块,噪声耦合取决于底部填充材料的介电常数。因此,表征底部填充材料的介电常数有助于预测信号和电源完整性问题。这种液体或半粘性材料通常通过浸入材料中的开端同轴探针的简单边缘电容模型来表征。但是,开口同轴方法不如基于谐振器的方法准确。需要一种方法来准确提取高频下液体或半粘性材料的介电常数。所提出的方法使用实壁腔体谐振器,其中谐振器用底部填充材料填充并固化。介电特性分析是一个复杂的过程,其中必须了解或准确测量腔体的物理特性。这包括导体的电导率、导体的粗糙度、腔体的尺寸和端口引脚位置。本文讨论了在使用腔体谐振器表征介电体时遇到的一些挑战。这种表征方法也可用于表征其他感兴趣的材料。关键词介电体、倒装芯片、介电常数、谐振器、底部填充。
新颖的聚酰亚胺堆积材料,用于高线制造高什岛,田中Shigeru tanaka,汉字木木木马斯拉·尼西纳卡(Masaru Nishinaka)和日本摘要的Mutsuaki Murakami Kaneka Corporation,我们摘要我们已经开发了一种新的热量型材料,以高效率堆积的pwbs高speed speed i/o o i/o o i sep speeed i/o o o i/sep speed i/o o i/o o o i/o。这些PWB满足以下要求;精细电路,低介电特性和出色的机械性能的良好加工性。我们提出的聚酰亚胺堆积材料显示出3.1的介电常数(DK),介电损耗(DF)为0.01(在1GHz时)。此外,机械性能以下材料显示;低温膨胀系数(CTE)为45ppm,拉伸强度为100MPa。尽管材料的表面粗糙度低于200米,但我们还是成功地沉积了具有非常高的果皮强度的无电镀层铜层。这意味着即使使用常规的半添加过程,该材料也适用于制造精细的电路。实际上,我们可以制作一个小于10micron l/s(线路和空间)的精细电路。近年来,需要电子设备具有许多功能和高处理速度。为了满足这些要求,像高性能CPU这样的IC芯片已经演变为具有高时钟频率和高I/O数字。要将CPU安装到基板上,通常采用翻转芯片附件方法以表现出CPU的最大性能,因此基板必须具有高接线密度。堆积的PWB,其电路是由半粘液方法形成的,这些底物已使用。下一代CPU的下一代堆积PWB,预计将具有较高的I/O数字,必须具有小于20微米L/s(线路和空间)的精细电路。对于制造精细的电路,对于构建材料而言,形成细缝电路的构建材料很重要,可以尽可能地具有少量的表面粗糙度,并且能够在不剥落的情况下粘附电路。环氧树脂主要用于堆积材料。处理环氧类型的堆积材料,以使材料的表面粗糙,并通过锚固效果牢固地粘附电路。为了制造小于20微米L/s的下一代细缝电路,需要一种新的堆积材料,其表面粗糙度比现有材料的表面粗糙度较小,并且对电路的良好粘合度。此外,新的积累材料必须具有低CTE(热膨胀系数)和低介电性能,这将改善堆积PWBS的电气可靠性或电气性能。为了开发下一代堆积材料,我们开始开发一种新的聚酰亚胺积聚材料,该材料基于用于电绝缘材料的聚酰亚胺树脂的特性,该材料期望具有出色的性质。由于这项研究,我们开发了一种新型的热固性聚酰亚胺积聚材料,该材料符合上述要求。在这项调查中,副本在本文中,评估了材料上无电镀层铜层的吉赫兹(GHz)周围的热性能,介电特性,通过可加工性能通过可加工性能通过激光进行细插电路的加工性。首先设计了新堆积材料的目标特性,设计了新堆积材料的目标特性。- - 一个小于50 ppm--的热膨胀系数(CTE)的介电损耗(DF)小于0.010,在1GHz- -a机械强度上,在100MPA-抗性的机械强度上,没有卤化的化合物 - 乘积构建的精细材料构建均超过20个微观的构建,构建均超过20个微观的过程,该过程的构建均超过20个,构建的启动构建的开发型构建均超过20个,构建的开发型构建均超过20次,构建了启用的新构建。堆积材料的表面以通过半添加过程制造精细的电路,堆积材料需要具有少量表面粗糙度的表面,并且具有较高的果皮强度,并具有无电镀层铜层。