3 格勒诺布尔阿尔卑斯大学,CNRS IMEP-LAHC,F-38000 格勒诺布尔,法国 通讯作者电子邮件:mikael.casse@cea.fr 我们概述了 FDSOI CMOS 晶体管在深低温下的性能,特别强调了背偏带来的好处。FDSOI 晶体管可在室温到低至 100mK 的温度下工作。测量和分析了主要的直流电特性、可变性和可靠性。我们还指出了在低温下出现的特定行为,并讨论了它们的物理起源和建模。 介绍 为了设计高效的量子计算机,需要将传统电子器件尽可能靠近量子比特 (qubit) 设备,考虑超导或 Si-spin 量子比特,以便读出和控制,从而减少对室温布线的需求 (1)。这种需求凸显了探索和开发低温 CMOS 技术的广泛重要性,其工作温度范围从 4.2K 到远低于 1K。此外,Si-spin 量子比特工艺也与 CMOS 工艺兼容,原则上可以将两者单片集成在单个芯片上 (2)、(3)。这可以为任何大规模量子处理器提供基本构建模块,通过设计可扩展的近量子比特低温电子器件来实现大规模量子比特矩阵索引,并最终开发容错通用门量子计算机 (4)。
混合的2D/3D钙钛矿材料对光伏和发光二极管(LED)群落特别感兴趣,因为与常规3D Perovskite吸收者相比,它们令人印象深刻的光电电特性以及改善的水分稳定性。在这里,研究了一种混合铅锡钙钛矿,其中含有3D结构或高度相岩石ruddlesden – Popper 2D结构的独特的自组装结构域。用超快的瞬态吸收测量值揭示了材料的复杂能量景观。表明,这些显微镜结构域之间的电荷转移仅发生在纳秒时尺度上,这与域的大尺寸一致。使用光泵 - terahertz探针光谱法,有效的电荷载体迁移率被证明是类似的纯2D和3D perovskites之间的中介。此外,提出了对自由载体重组动力学的详细分析。通过在光激发载体种群的完整动态模型中结合一系列激发波长的结果,可以表明,纤维中的2D域与3D域具有非常相似的载波动力学,这表明不应由材料的异型结构构成远距离电荷传输。
混合的2D/3D钙钛矿材料对光伏和发光二极管(LED)群落特别感兴趣,因为与常规3D Perovskite吸收者相比,它们令人印象深刻的光电电特性以及改善的水分稳定性。在这里,研究了一种混合铅锡钙钛矿,其中含有3D结构或高度相岩石ruddlesden – Popper 2D结构的独特的自组装结构域。用超快的瞬态吸收测量值揭示了材料的复杂能量景观。表明,这些显微镜结构域之间的电荷转移仅发生在纳秒时尺度上,这与域的大尺寸一致。使用光泵 - terahertz探针光谱法,有效的电荷载体迁移率被证明是类似的纯2D和3D perovskites之间的中介。此外,提出了对自由载体重组动力学的详细分析。通过在光激发载体种群的完整动态模型中结合一系列激发波长的结果,可以表明,纤维中的2D域与3D域具有非常相似的载波动力学,这表明不应由材料的异型结构构成远距离电荷传输。
摘要:摩擦电纳米发电机 (TENG) 是一种可持续和可再生技术,用于收集自然界中浪费的机械能,例如运动、波浪、风和振动。TENG 装置通过摩擦材料对接触和分离的循环工作原理发电。该技术在能源生产、人类护理、医药、生物医学和工业应用领域有着突出的应用。TENG 装置可应用于许多实际应用,例如便携式电源、自供电传感器、电子设备和电力消耗设备。借助 TENG 能源技术,可以在不久的将来减少甚至解决重大能源问题,例如减少气体排放、加强环境保护和改善人类健康。通过利用摩擦电特性具有显著差异的材料或实施先进的结构设计,可以提高 TENG 的性能。本综述全面研究了 TENG 技术在利用机械废能方面的最新进展,主要关注其可持续性和可再生能源属性。它还深入探讨了优化摩擦表面结构以提高输出性能、实施储能系统以确保稳定运行和长期使用、探索能量收集系统以有效管理收获的能量以及强调 TENG 在各种情况下的实际应用等主题。结果表明,TENG 技术有可能在不久的将来广泛应用于可持续能源生产、可再生能源、工业和人类护理。
图 2. 所提出的光控编码元件的设计和特性。a) 元原子编码元件的详细结构,在 SiO 2 基板上构建了 1 μm 厚的金方块和 1 μm 厚的 GeTe 方块图案。b) 编码元件两种状态的示意图:状态“0”表示 GeTe 的非晶态(绝缘态),状态“1”表示 GeTe 的晶体(导电)态。c) 和 d) 两种状态下编码元件的相应反射特性(c 幅度和 d 相位)。e) GeTe 层表面电阻随温度的变化(双探针测量),显示两种状态下的电特性相差六个数量级以上,并且冷却至室温时晶体状态具有非挥发性行为。 f) 有限元模拟 GeTe 层在具有不同能量密度的 35 纳秒长单脉冲紫外激光照射下的温度上升情况:单脉冲的通量为 90 mJ/cm 2,将使最初为非晶态的 GeTe 的温度升至其结晶温度 ( TC ) 以上,而随后的 190 mJ/cm 2 激光脉冲将使 GeTe 的温度升至其局部熔化温度 TM 以上,并将材料熔化淬火回非晶态。下图是拟议的 1 比特元原子的配置和示意图
摘要:近年来,碳纳米管(CNT)已作为材料出现,这些材料经常用于制备具有导电或高级介电特性的聚合物纳米复合材料,因为它们的独特特性(包括高温和电导率),包括高度和稳健的材料,具有很高的长度至直径比例。但是,在使用这些材料的聚合物纳米复合材料制备过程中,遇到了一些问题。主要问题之一是,在准备这些导电材料或将它们添加到聚合物中后,由于它们的导电结构,它们倾向于聚集,形成团聚。因此,在这项研究中,首先,多壁碳纳米管(MWCNT)用多苯胺(PANI)的导电形式(随后,聚(Dimethyl Siloxane)(PDMS)聚合物聚合物纳米复合膜功能化,具有不同浓度的多型多壁碳Nanotubes的浓度。然后,表征了膜的结构,形态,电和介电特性。仅添加了1.5%的PANI-CNT,在1 Hz时,PDMS的介电常数增加了47倍。此处介绍的介电膜可用于电容器,柔性电子,介电弹性体和人造肌肉应用。关键字:碳纳米管(CNTS),导电聚合物,介电,聚苯胺(PANI),聚合物纳米复合材料,聚(二甲基Siloxane)(PDMS)
碳 (sp3)-碳 (sp2) 材料有可能彻底改变储能和微电子等领域。然而,在柔性基底上合理设计和印刷碳-碳材料仍然是可穿戴电子技术中的挑战。这项研究展示了用于微型超级电容器的柔性激光诱导石墨烯 (LIG)-硼掺杂金刚石纳米壁 (BDNW) 混合纳米结构的可扩展制造。聚酰亚胺薄膜上的直接激光写入通过 BDNW 粉末的存在进行调节,其中 BDNW 在 CO2 激光波长下的明显吸光度会提高局部薄膜温度。激光照射引起的热冲击在金刚石晶粒边界处产生石墨化和无定形碳,从而增加了 LIG-金刚石界面之间的热和电荷传输能力。样品进一步用 O2 等离子体处理以调节润湿性或改善微型超级电容器装置性能。石墨烯的出色电特性、金刚石的卓越电化学稳定性以及含氧基团的必要贡献,使其具有显著的电荷存储容量(18 mF cm − 2 @ 10 mV s − 1 )和循环稳定性(10 000 次循环后保持 98%),优于大多数最先进的基于 LIG 的超级电容器。此外,尽管机械应力极大,这些微型超级电容器仍保持其出色的电化学性能,因此有望成为高功率、柔性/可穿戴电子产品。
抽象的放射发光核电电池是核电池中间接转换的重要代表性类型。已详细研究了此类电池的设计,制造和性能优化。包括荧光层材料参数,荧光层结构设计,放射发光光谱调节以及放射性发光发射强度增强的特定研究内容。在β颗粒和X射线激发下测试了具有不同荧光层的核电池的电特性。随着荧光层的质量厚度增加,电性能参数首先增加然后减小,并且具有最佳的质量厚度。通过胶带粘附方法制备具有不同结构几何参数的CU磷光层。当磷光层的厚度接近放射性颗粒范围时,可以实现良好的输出性能。此外,还引入了纳米荧光材料的效果机制,以提高电池性能。CSPBBR 3钙钛矿量子点薄膜材料及其在放射发光核电池中的应用。CSPBBR 3可以有效地增强光谱响应耦合度,并大大提高电池的输出功率。此外,制备了使用CDSE/ZnS核心壳量子点与Au纳米颗粒相结合的新型放射发光材料。结果表明,纳米耦合系统确实可以改善发光发射强度和电池输出性能。这项研究工作可以为未来的空间电池技术提供新的方向。
随着物联网 (IoT) 的快速发展和 5G 的引入,传统的硅基电子产品已无法完全满足市场需求,例如由于机械不匹配导致的非平面应用环境。这为使用柔性材料避免物理刚性的柔性电子产品带来了前所未有的可能性。丝素蛋白、纤维素、果胶、壳聚糖和黑色素因其出色的生物相容性和生物降解性而成为下一代柔性电子产品最有吸引力的材料之一。丝素蛋白在生物相容性和生物降解性方面优于它们,并且还具有多种其他理想特性,例如可调节的水溶性、出色的光学透射率、高机械弹性、重量轻和易于加工,而这些特性是其他材料部分或完全不具备的。因此,丝素蛋白已成为生物相容性柔性电子产品最广泛使用的构建块之一,尤其是用于可穿戴和可植入设备。此外,近年来,丝素蛋白的功能特性研究也越来越受到重视,如介电特性、压电特性、高失电子倾向性、环境敏感性等。本文不仅介绍了不同种类丝素蛋白的制备技术以及丝素蛋白作为基础材料应用的最新进展,还介绍了丝素蛋白作为功能元件的最新进展。本文还对丝素蛋白基柔性电子产品面临的挑战和未来发展进行了探讨。
Chen 400化学过程合成和设计3.0:3 Cr。e本课程介绍了所有化学过程和操作所共有的核心技术技能和专业职责。该课程还涵盖了过程综合,过程流和图,化学产品设计,过程热力学,化学过程反应,过程传质,传热和流体流,经济有效性和操作安全。Chen 404高级化学反应堆设计3.0:3 Cr。e本课程介绍了对单个反应器系统和多个反应器系统的性能方程的解释。课程主题包括:理想反应堆的设计以及与理想性,多种化学反应,稳态和不稳定状态的操作,反应堆的优化,收集和分析速率法律数据和生物反应器的分析。本课程涵盖了催化科学,催化剂特性,制备和表征,催化反应器设计和催化剂失活的基础。该部分之后是对最重要的工业催化过程的概述:氢产生和合成气体反应,有机化合物的氢化和脱氢,以及有机和无机化合物的氧化。Chen 412工业催化过程3.0:3 Cr。 e本课程涵盖了催化科学的基础;催化剂特性,制备和表征,催化反应器设计和催化剂停用。 Chen 413高级传输现象3.0:3 Cr。 e本课程涵盖了动量,能量和质量运输的基本理论。Chen 412工业催化过程3.0:3 Cr。e本课程涵盖了催化科学的基础;催化剂特性,制备和表征,催化反应器设计和催化剂停用。Chen 413高级传输现象3.0:3 Cr。e本课程涵盖了动量,能量和质量运输的基本理论。该部分之后是对最重要的工业催化过程的概述:氢产生和合成气体反应(Fischer-Tropsch合成),有机化合物的氢化和脱氢,有机和无机化合物的氧化。壳的动量,热量和质量平衡以及变化的方程是确定层流的速度,温度和浓度分布的。粘度,导热率和质量扩散率也被涵盖,以及摩擦因子和宏观平衡。Chen 416化学工程优化3.0:3 Cr。 e本课程介绍了优化方法在热力学,单元操作,分离过程,能量设计和工业实践中优化的重要化学工程问题上的应用。 本课程包括连续,线性和非线性以及混合整数线性编程问题。 该课程强调问题定义,模型公式和解决方案分析,并提供有关现有算法和软件的足够详细信息,以解决问题。 Chen 418聚合物和聚合物工程3.0:3 Cr。 e本课程对聚合物及其商业应用的合成有很好的了解。 这些材料所具有的重要特性,包括它们的分子,物理,化学,热,机械和电特性。 还将涵盖塑料的形成技术(压缩成型,注射成型…)和导致聚合物降解的不同参数。 Chen 420食品工艺工程3.0:3 Cr。Chen 416化学工程优化3.0:3 Cr。e本课程介绍了优化方法在热力学,单元操作,分离过程,能量设计和工业实践中优化的重要化学工程问题上的应用。本课程包括连续,线性和非线性以及混合整数线性编程问题。该课程强调问题定义,模型公式和解决方案分析,并提供有关现有算法和软件的足够详细信息,以解决问题。Chen 418聚合物和聚合物工程3.0:3 Cr。 e本课程对聚合物及其商业应用的合成有很好的了解。 这些材料所具有的重要特性,包括它们的分子,物理,化学,热,机械和电特性。 还将涵盖塑料的形成技术(压缩成型,注射成型…)和导致聚合物降解的不同参数。 Chen 420食品工艺工程3.0:3 Cr。Chen 418聚合物和聚合物工程3.0:3 Cr。e本课程对聚合物及其商业应用的合成有很好的了解。这些材料所具有的重要特性,包括它们的分子,物理,化学,热,机械和电特性。还将涵盖塑料的形成技术(压缩成型,注射成型…)和导致聚合物降解的不同参数。Chen 420食品工艺工程3.0:3 Cr。Chen 420食品工艺工程3.0:3 Cr。e本课程提供了对各种供暖,冷却,冷冻,干燥和食物结晶的各种方法和工程原理的先进知识和理解的概念;它涵盖了食物中的水关系以及加工过程中物理化学变化的动力学。