EURAMET 的电磁技术委员会 (TC-EM) 负责与电磁计量相关的科学、技术和组织问题。TC-EM 的发展领域包括:- 电磁学的 SI 单位的实现;- 电磁常数的测定和基本测试;- 量子电工计量;- 直流电压、电阻和电流;- 交流电阻、电容、电感;- 交流电压、电流、功率和能量;电能质量;- 高压和电流;- 其他直流和低频测量,包括电荷、相角、电流和电压波形,- 电场、磁场和电磁场;- 射频和微波测量;- THz 计量;- 材料的电磁特性,包括电导率、介电特性和磁性;- 纳米级电磁测量。 TC-EM 负责执行 EURAMET 作为区域计量组织 (RMO) 为履行国际计量委员会 (CIPM-MRA) 相互承认协议所要求的活动,包括管理校准和测量能力、组织比对、维护现场比对指南。TC-EM 参与制定和执行 EURAMET 战略和 EURAMET 计量研究计划(目前为 EMRP 和 EMPIR)。TC-EM 每年组织一次联系人会议,以及其他专门讨论特定事项的会议(例如,参与计量研究计划)。TC-EM 主席通过年度报告向 EURAMET 汇报,并向 EURAMET TCC 和大会汇报参与情况。TC-EM 主席和成员资格受 EURAMET 议事规则 [现行版本 G-PRM-ROP-010,版本 v4.0 2016 年 5 月 24 日,第 199 条] 的监管。九
EURAMET 的电磁技术委员会 (TC-EM) 负责与电磁计量相关的科学、技术和组织问题。TC-EM 的发展领域包括:- 电磁学的 SI 单位的实现;- 电磁常数的测定和基本测试;- 量子电工计量;- 直流电压、电阻和电流;- 交流电阻、电容、电感;- 交流电压、电流、功率和能量;电能质量;- 高压和电流;- 其他直流和低频测量,包括电荷、相角、电流和电压波形,- 电场、磁场和电磁场;- 射频和微波测量;- THz 计量;- 材料的电磁特性,包括电导率、介电特性和磁性;- 纳米级电磁测量。 TC-EM 负责执行 EURAMET 作为区域计量组织 (RMO) 为履行国际计量委员会 (CIPM-MRA) 相互承认协议所要求的活动,包括管理校准和测量能力、组织比对、维护现场比对指南。TC-EM 参与制定和执行 EURAMET 战略和 EURAMET 计量研究计划(目前为 EMRP 和 EMPIR)。TC-EM 每年组织一次联系人会议,以及其他专门讨论特定事项的会议(例如,参与计量研究计划)。TC-EM 主席通过年度报告向 EURAMET 汇报,并向 EURAMET TCC 和大会汇报参与情况。TC-EM 主席和成员资格受 EURAMET 议事规则 [现行版本 G-PRM-ROP-010,版本 v4.0 2016 年 5 月 24 日,第 199 条] 的监管。九
对在医疗领域的微波成像(MWI)的潜在用途(主要是由于其便携性,低成本,安全使用非电源辐射和非侵入性)的兴趣越来越大。它已被应用,例如用于乳腺癌诊断[1]和脑冲程检测[2],[3]。MWI工作原理是在微波频率下健康组织与受影响的组织之间存在介电对比度。为了解决结果不良问题,可以使用对比度倒置(CSI)方法定量重建感兴趣域(DOI)中的介电特性[4]。CSI是一种基于优化的算法,可最大程度地降低对比度和对比源变量中特殊形成的功能。在这里,CSI算法与有限元方法(FEM)求解器[5]结合起作用,该方法将整个体积分散使用,不合理且不均匀。这使我们能够建模完整的天线几何形状,包括合成环境中的同轴饲料端口[6],从而导致更现实的模拟场景。它还允许我们在反转模型中包含一个不均匀的数值背景(类似于[7],[8]中描述的过程)。尽管场数使用线性边缘元件,但最初使用脉冲基函数来表达FEMCSI的对比度和对比度的脉冲函数[9],[10]。在这里,目的是提出一种使用磁场的基础函数获得的替代离散化,也用于对比源变量。对于简化的方案,在[11]中报告了初步结果,其中标准实施[12]与提议的
(Al 2 O 3)X(HFO 2)具有不同组合物的1-X膜通过血浆增强的原子层沉积(PEALD)沉积在硅底物上,并制造了金属氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物层沉积物(MOS)电容器。通过电气测量检查了不同诱导的Al含量对HFO 2介电特性的影响。结果表明,增加的含量增加了平坦的电压,降低了界面状态密度(D IT),并显着降低了给定电压下的泄漏电流。此外,室温I-V测量值表明Schottky发射(〜0.8-4.8 mV/cm),Poole-Frenkel(PF)发射(〜4.8-7.3 mV/cm)和Fowler-Nordheim(FN)(FN)隧道(〜7.3-8.3 mV/cm)是众多机制。在较高的温度(75–100°C)下,富含AL的样品(50-100%)的泄漏机制从FN隧道转移到高电场的PF发射(〜3.3-6.87 mV/cm)。使用X射线光电子光谱(XPS)和紫外线(UV)分光光度法表征膜的组成和能带对准,表明将Al引入HFO 2会增加带盖,从而增加了介电常数,可减少介电常数,并显着降低氧气空间。因此,进一步证明,具有适当含量的HFO 2膜可以有效地增强介电特性并调整介电层的材料参数。
摘要:初期的铁电特性已经成为一种有吸引力的功能材料,因为它们的潜力是为外来的铁电行为而设计的,因此具有巨大的希望,可以扩大铁电家族。然而,到目前为止,他们的人工设计的铁电性远远远远没有与经典的铁电抗衡。在这项研究中,我们通过制定超细纳米域工程策略来应对这一挑战。通过将这种方法应用于基于SRTIO 3的膜的代表性初期铁电膜,我们实现了前所未有的强大铁电性,不仅超过了先前的初期铁电磁记录,而且还可以与经典的铁电极相媲美。,薄膜的不分极化可达到17.0μccm-2,超高的居里温度为973 K.原子尺度研究阐明了这种强大的高密度超细性纳米域在跨越3-10个单位细胞中这种强大的高密度超细性纳米域中这种强大的铁电性的起源。将实验结果与理论评估相结合,我们揭示了潜在的机制,在这种机制中,有意稀释的外国FE元素可以很好地产生更深的Landau能量,并促进了极化的短期排序。我们开发的策略显着简化了非常规铁电的设计,为探索新的和上级铁电材料提供了多功能途径。
由于全球对现代技术的便携式电源需求的增长,含LI的电池(LB)作为常规能源的新型替代方案正在迅速增加。将LB的大规模整合到每日电子设备中,从手机[1]到电动汽车,[2]可以大大减少温室气体的排放,减少有毒重金属的使用,并进一步使绿色技术能够保留环境。 尤其是引入便携式锂离子电池已经彻底改变了绿色能源的储存(例如,从太阳能或风能转换)并减少了整体能源消耗。 [3,4]然而,一方面,提高了锂离子电池的能源存储能力,能源密度和效率,并解决了环境可持续性和制造成本的问题,另一方面,必须确定新的新替代材料和设计。 在过去的二十年中,源自分层结构(例如石墨)的纳米材料的出现导致它们大量融合到能源行业的各个部门,尤其是LB生产。 [5 - 8]不同的基于碳的纳米形态,例如碳纳米管(CNT),石墨烯和石墨烯量子点(GQDS),已广泛用于改善锂离子电池的性能。 石墨烯的出色电特性(10 000 cm 2 V 1 S 1)[9-11] [9-11]在改善电极电导率[12]以及电解质的离子电导率方面引起了极大的兴趣。将LB的大规模整合到每日电子设备中,从手机[1]到电动汽车,[2]可以大大减少温室气体的排放,减少有毒重金属的使用,并进一步使绿色技术能够保留环境。尤其是引入便携式锂离子电池已经彻底改变了绿色能源的储存(例如,从太阳能或风能转换)并减少了整体能源消耗。[3,4]然而,一方面,提高了锂离子电池的能源存储能力,能源密度和效率,并解决了环境可持续性和制造成本的问题,另一方面,必须确定新的新替代材料和设计。在过去的二十年中,源自分层结构(例如石墨)的纳米材料的出现导致它们大量融合到能源行业的各个部门,尤其是LB生产。[5 - 8]不同的基于碳的纳米形态,例如碳纳米管(CNT),石墨烯和石墨烯量子点(GQDS),已广泛用于改善锂离子电池的性能。石墨烯的出色电特性(10 000 cm 2 V 1 S 1)[9-11] [9-11]在改善电极电导率[12]以及电解质的离子电导率方面引起了极大的兴趣。[13]受这些基于碳的纳米材料,其他分层材料的纳米结构的启发,例如过渡金属二核苷(TMDS),[14]磷,[15]过渡金属碳(TMCS:TMC:e,例如,MXENES),[16],[16],[16]和NITRIDE(BORON NITRIDE(BN)[17] [17] [17] [17] [17]尤其是,由于与上述材料家族相比,由于其出色的热化学稳定性,高质子和离子汇率,高质子和离子汇率,高质子和离子汇率的可调性以及电子性能的可调性,BN在能源储能研究中的适用性已经快速增长。[18,19]在下一部分中,讨论了LB中BN纳米材料的重要性,并具有强调BN作为LB技术的未来候选部分的属性。同时,作者旨在检查H-BN的局限
学习成果 完成本模块后,学生将了解: - 计算神经科学的基本概念、理论基础和最常用的模型 - 相关的基本神经生物学知识和相关的理论方法以及这些方法迄今为止得出的结论 - 不同模型的优势和局限性 - 如何适当地选择用于建模神经系统的理论方法 - 如何在考虑神经生物学发现的同时应用这些方法 - 如何批判性地评估获得的结果。 - 如何使模型适应新问题以及开发新的神经系统模型。 内容 本模块提供有关神经系统组成部分及其建模的基本知识,包括有关神经元和神经回路内信息处理的基本神经生物学概念和模型。具体主题包括: - 神经元的电特性(能斯特方程、戈德曼方程、戈德曼-霍奇金-卡兹电流方程、膜方程) - 霍奇金-赫胥黎模型(电压依赖性电导、门控变量、瞬态和持续电导、动作电位产生) - 通道模型(状态图、随机动力学) - 突触模型(化学和电突触) - 单室神经元模型(整合-激发、基于电导) - 树突和轴突模型(电缆理论、拉尔模型、多室模型、动作电位传播) - 突触可塑性和学习模型(释放概率、短期抑制和促进、长期可塑性、赫布规则、基于时间的可塑性规则、监督/无监督和强化学习) - 网络模型(前馈和循环、兴奋-抑制、发放率和随机、联想记忆) -神经元和网络模型的相空间分析(线性稳定性分析、相图、分岔理论模块组件
理学学士(专业)物理科学:电、磁和电磁理论等。指导研究项目:1. 指导 5 名理学学士(电子)学生完成 2016-17 学年德里大学汉斯拉吉学院的“设想高效道路:多功能交通控制系统”项目。2. 指导 10 名理学学士(高级)物理学和理学学士(高级)植物学学生完成 2015-16 学年德里大学汉斯拉吉学院的创新项目 (HRC-302),项目名称为“开发用于实时定位和识别德里大学北校区植物的移动应用程序”。该项目由德里大学研究委员会资助。在项目期间,我们成功推出了一款功能齐全的 Android 应用程序“树木定位器”。 (基金价值为 4,50,000 卢比) 出版物简介 1. 在国际同行评审期刊上发表的研究出版物: - [BaTiO3]1-x-[CoFe2O4]x 块体复合材料中的磁电效应,Shivani Agarwal,OF Caltun 和 K. Sreenivas,固态通信 2. 参加的国际会议: - 脉冲激光沉积的 BaTiO3 – CoFe2O4 多铁性复合薄膜的结构和介电特性,Shivani Agarwal、K. Sreenivas 和 Vinay Gupta,国际纳米和微电子会议,ICONAME – 08,2008 年 1 月 3 日 – 1 月 5 日,本地治里,本地治里(口头报告) - 印度 - 澳大利亚多功能纳米材料纳米结构和应用研讨会 (MNNA 2007),2007 年 12 月 19 日 – 12 月 21 日,物理和天体物理系,德里大学,德里 - 110007
摘要本质上导电聚合物(ICP)彻底改变了材料科学,其在电子,传感器和能源存储中的多功能应用。本评论探讨了多吡咯(PPY)及其与金属氧化物的混合纳米复合材料的合成,性质和应用,强调了电导率,稳定性和性能的进步。ppy是一种突出的导电聚合物,通过化学聚合或电化学方法合成,并具有高电导率和机械柔韧性。与金属氧化物(如镍氧化物(NIO)和钨氧化物(WO 3))(WO 3)等金属氧化物的兴奋剂PPY增强了其在各种应用中的特性。PPY-NIO复合材料显示出提高的电导率和介电特性,而PPY-WO3复合材料在超电容器中表现出优异的电化学性能。本评论重点介绍了合成和表征这些复合材料的最新进展,包括X射线衍射(XRD),紫外线可见光谱(UV-VIS)和拉曼光谱法。这些发现强调了PPY金属氧化物复合材料在诸如储能,腐蚀保护和传感器开发等技术中的潜力。关键字:导电聚合物,聚吡咯,金属氧化物,掺杂,电性能。1。介绍大约四十年前,本质上导电聚合物(ICP)被添加到现代材料列表中,并打开了许多应用。重要的ICP包括聚乙炔,聚苯胺,聚吡咯,聚鸡,聚噻吩等等。polysulfur氮化物([sn] X),由Walatka等人发现。[1]在1973年,是第一个无机导电聚合物。在1970年代后期,MacDiarmid,Shirakawa和Heeger通过化学聚合确定了有机聚乙烯的半导体特性。Heeger博士的团队增强了基于聚噻吩的二极管,
教授Sebahattin TÜZEMEN 个人信息 办公室电话:+90 442 231 5888 分机号:5888 网址:https://avesis.atauni.edu.tr/stuzemen 国际研究人员 ID ScholarID:Sebahattin ORCID:0000-0003-1235-970X Yoksis 研究人员 ID:7384 教育信息 博士学位,曼彻斯特理工大学和曼彻斯特维多利亚大学,科学技术学院,电气和电子工程,英国 1998 - 1993 研究生,阿塔图尔克大学,科学技术学院,物理学,土耳其 1985 - 1987 本科,阿塔图尔克大学,科学与文学,物理学,土耳其 1981 - 1985 外语 英语,C1 高级论文 博士学位,对块体 GaAs 中反向对比中心的研究,曼彻斯特大学,Umıst,电气电子工程,1993 研究生,研究 P+PP+ Si 结构中电流传导的温度依赖性,阿塔图尔克大学,科学研究所,物理,1987 研究领域 电气和电子工程、能源、照明技术、可再生能源、物理、天文学和天体物理学、跨学科物理学和相关科学技术领域、电子和磁性设备、微电子学、电子、无线电和微波技术、物理化学、材料科学、电磁学、声学、传热、经典力学和流体动力学、光学、普通物理学、相对论和引力、通信、教育、历史和哲学、统计物理学、热力学和非线性动态系统、量子力学、场论和相对论、密集文章 2:电子结构、电、磁和光学特性、电子结构的电特性、界面、薄膜和低维结构、自然科学、工程和技术 学术和行政经历 阿塔图尔克大学,2008 - 2013 阿塔图尔克大学,2000 - 2003