OEE#1(即用于确定P&P的数据的数据包括实验室核心测量和地球物理原木(中子孔隙率,核磁共振原木和电阻率对数)。使用了模型域中其他两个井的数据:Hinton Brothers#7(Core P&P,Logs)和Furrow#11(日志)。在OEE#1观察到的孔隙率和渗透率范围类似于Furrow#11和Hinton Brothers#7。中子孔隙度原木为核心孔隙度提供了最佳的校准。从校准到核心渗透性的核心校准的孔隙率对数创建了渗透率对数。OEE#1的渗透率日志使用了NMR日志和Schlumberger娃娃研究方法。Hinton Brothers#7和Furrow#11 Wells的渗透率日志使用了每个井的孔隙率和电阻率日志。
将电阻率与岩性联系起来并非易事。因此,充分利用这些数据仍然具有挑战性。在进行成功的地质解释和构建合理的 3D 地质模型之前,必须考虑许多限制。在本文中,我们提出了一种 AEM 数据 3D 地质建模方法,其中将限制与认知和知识驱动的数据解释一起考虑。建模是通过使用体素建模技术和为此目的开发的工具迭代执行的。基于 3D 电阻率网格,这些工具允许地质学家选择定义 3D 模型中任何所需体积形状的体素组。八叉树建模的最新发展确保使用有限数量的体素进行精确建模。
国家博士研究员(AICTE-NDF)(2004-08):全印度技术教育委员会 (AICTE) 颁发奖学金,在孟买印度理工学院地球科学系进行博士研究。研究目的是从高分辨率卫星数据和地面地球物理电阻率勘测中识别硬岩地形中的裂缝和深层含水层。使用常规和图像处理技术从卫星图像中识别线性构造。沿着和穿过选定的线性构造进行地球物理电阻率勘测,并在选择的观测井中进行泵测试,以获得含水层特性,如孔隙度、渗透率、透水性、比产量、比容量和下降度。通过 ArcGIS 软件的加权和基于排名的集成分析,识别出合适的地下水潜力和人工补给区。
抽象NBO 2是由于室温高于室温的绝缘体金属过渡而导致电阻开关设备的有前途的候选者,这与从变形金红石结构到未染色的相关相关。然而,到目前为止生产的NBO 2薄膜的电阻率太低,无法达到高开关开关比率。在这里,我们报告了通过脉冲激光沉积在MGF 2(001)底物上生长的单晶NBO 2(001)薄膜的结构,电和光学表征。退火步骤在NBO 2(004)X射线Bragg反射的一半最大宽度下减少了一个数量级,而膜的电阻率则增加了两个数量级,在室温下约为1kΩcm。退火样品的温度依赖性电阻率测量表明,低于650 K的两个深层缺陷,激活能为0.25 eV,0.37 eV占主导地位,而高于650 K的内在传导高于650 K。通过光谱椭圆法和与垂直于垂直于扭曲的金红石结构的C轴的电场矢量吸收的吸收测量值的光学表征,表明在室温下约0.76 eV的基本吸收开始,而在4 K时,发作转移到0.85 eV。这些光学转变被解释为在理论上预测的间接带隙的变形金红石NBO 2的间接带隙。
过去二十年对数据进行解释。这一点很重要,因为该技术不直接提供承运人资料。相反,电阻率曲线是通过分析深度相关的扩散电阻数据间接获得的。这需要物理
最近对纳米图案的薄膜进行的实验表明,与金属相变(QSMT)具有线性温度电阻率的非同寻常的量子超强度(QSMT)。相比之下,此类过渡和标准理论考虑的最著名示例预测了r Q =ℏe 2的温度独立板电阻。我们提出了一个无序超导体的有效理论,该理论在临界点具有强大的T线性电阻率的QSMT。我们模型中的关键成分是配对相互作用中的空间障碍。这种随机配对反映了在最近的微观d波su- percoductor的近期平均野外研究中看到的新兴相障碍。我们还预测,在这样的系统中,磁敏感性差异为logλ
在低电子能量的扫描电子显微镜(SEM)中,损伤诱导的电压改变(DIVA)对比度机制已作为一种快速且方便的方法,可以直接可视化硝酸盐(GAN)中能量离子辐照引起的电阻率的增加。在覆盖有金属面膜的蓝宝石上外上植物生长的gan层,并在600 keV能量下受到He 2 +辐射的约束。在不同的电子束电流和扫描速度下,在SEM上成像样品横截面处的二维损伤曲线。通过电子束照射沉积的累积电荷的增加观察到了图像对比的逐渐发展,以最终达到与GAN离子辐射部分的局部电阻率相关的对比度的饱和水平。提出的方法允许人们直接可视化离子辐照区域,即使是由于离子损伤导致的最低电阻率变化,即用离子辐照后,甘恩的所有级别的绝缘层堆积。考虑到不可能将湿化学的蚀刻技术应用于GAN,它使提出的技术成为基于GAN-基于GAN-基于电子设备的高度抗性和绝缘区域的可视化方法。提出的作品的主要目的是更深入地了解GAN中的Diva对比,特别强调讨论栅格速度和电子束电流的作用,即电荷堆积的细节样品表面。
密集,非孔和真空紧密高机械强度和硬度低热量膨胀高容量电阻率耐磨性•一致的介电常数敏感性•容易接受莫利 - 曼格纳斯金属化,用于高温
导电墨水广泛用于各个领域,尤其是在电子印刷行业中。导电墨水更加灵活,更小,并且具有多功能功能。本研究旨在研究拉伸应力下导电墨水的电阻率。将碳导电墨水印在热塑性聚氨酯(TPU)上,并在120°C的烤箱中固化30分钟。将导电墨水夹在拉伸设备上,并以不同的伸长值拉伸。电阻率是通过多米测量的,板电阻是通过四点探针测量的。在40 mm的导电墨水中,初始电阻为0.562kΩ,当将其伸展到其初始长度的18%时,它变为1.217kΩ。由于拉伸应力下导电墨水表面的缺陷,导电墨水的电阻也增加了。在40毫米的导电墨水中,板电阻在初始状态下为793.17 r/sq,并在伸展至其初始长度的18%时变为3059.37 r/sq。通过比较导电墨水的不同长度,可以在5.6mm的伸长率下观察到40 mm导电墨水的裂纹点,应变水平为0.14。60mm导电墨水的裂纹点为9.6mm,应变水平为0.16。不同导电墨水之间的开裂点的应变水平非常闭合。当应变水平达到0.15左右时,导电墨水开始破裂。总而言之,在拉伸应力下,板电阻和电阻率正在增加,这意味着电导率下降。