2%PD/CEO 2(58.8±2.1 KJ mol -1)> 0.1%PD/CEO 2(43.8±2.2 kJ mol -1),表明0.1%PD/CEO 2具有原子分散的PD物种的催化剂在CO 2水电中产生了本质上的活性。通过表面PD原子归一化的反应速率进一步证实了这一点,该反应速率通过PD含量(表S1)和通过CO滴定确定的PD分散(图s6)。观察到,随着PD载荷的降低,反应速率显着提高,其中0.1%PD/CEO 2催化剂不仅仅仅催化CO 2氢化为CO,而且表现出更多的
1 荷兰埃因霍温理工大学复杂分子系统研究所 2 荷兰埃因霍温理工大学机械工程系微系统研究所 3 德国亚琛工业大学电气工程与信息技术学院 4 德国于利希研究中心生物信息处理 - 生物电子研究所 5 新加坡国立大学材料科学与工程系(MSE) 6 新加坡国立大学电气与计算机工程系(ECE) 7 加拿大舍布鲁克大学技术创新跨学科研究所(3IT) 8 加拿大舍布鲁克大学纳米技术纳米系统实验室(LN2)-CNRS UMI-3463 9 电子、微电子和纳米技术 (IEMN),里尔大学,阿斯克新城,法国
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
最新的动力和符合微电子制造的进展为健康监测和疾病治疗开辟了机会。其他材料工程的进步,例如导电,皮肤样水凝胶,液体金属,电动纺织品和压电薄膜的开发提供了安全舒适的方式,可以与人体接口。一起,这些进步使具有集成的多模式感应和刺激能力的生物电子设备的设计和工程能够在身体上的任何地方佩戴。在这里特别感兴趣的是,外耳(耳膜)提供了一个独特的机会来设计具有高度可用性和熟悉程度的可扩展生物电子设备,鉴于耳机的广泛使用。本评论文章讨论了能够生理和生物化学感应,认知监测,靶向神经调节以及对人类计算机相互作用的控制的耳朵生物电子设备开发的最新设计和工程进步。从这个可扩展的基础上讲,研究和工程的增长和竞争将增加,以推动耳态生物电子学。这项活动将导致患者和消费者对这些智能耳机式设备的采用增加,以跟踪健康,治疗医疗状况以及增强人类计算机的相互作用。
患有严重神经损伤的个体通常依赖于辅助技术,但是当前的方法在准确解码多度自由度(DOF)运动方面存在局限性。皮质内脑机界面(IBMIS)使用神经信号提供更自然的控制方法,但目前在更高的动作方面挣扎 - 大脑毫不费力地处理。从理论上讲,大脑通过肌肉协同作用简化了高功能运动,这些肌肉将多个肌肉连接起来作为单个单位。已经使用降低性降低技术进行了研究,例如主成分分析(PCA),非负矩阵分解(NMF)和Demixed PCA(DPCA),并成功地用于降低噪声并改善非侵入性应用中的噪声并提高离线解码器的稳定性。然而,它们在改善各种任务的植入记录的解码和普遍性方面的有效性尚不清楚。在这里,我们评估了大脑和肌肉协同作用是否可以在非人类灵长类动物的IBMI表现中提高执行两多手指任务的IBMI表现。具体来说,我们测试了PCA,DPCA和NMF是否可以压缩和降低大脑和肌肉数据,并改善跨任务的解码器概括。我们的结果表明,尽管所有方法在解码准确性时都有最小的损失有效地压缩数据,但没有通过降解来改善性能。此外,这些方法均未增强跨任务的概括。这些发现表明,虽然降低维度可以帮助数据压缩,但仅凭它可能无法揭示提高解码器性能或概括性所需的“真实”控制空间。需要进一步的研究来确定协同作用是最佳控制框架还是是否需要替代方法来增强IBMI应用中的解码器鲁棒性。
跨多个领域(例如航空、汽车和核电行业)的复杂系统操作员需要长时间连续地执行任务。长时间连续使用会导致精神疲劳以及认知灵活性、注意力和情境意识的下降,从而危及复杂操作的安全性和效率。基于心理状态的自适应系统可能是解决此问题的方法。这些系统根据一系列指标推断操作员的当前心理状态,这些指标包括操作员独立测量(例如天气和一天中的时间)、行为(例如反应时间和车道偏差)以及生理标记(例如脑电图和心脏活动)。然后可以以多种方式之一调整操作员与系统之间的交互,以减轻任何检测到的认知状态下降,从而确保持续的安全性和效率。根据手头的任务及其具体问题,可能的调整(通常基于机器学习估计)例如包括修改信息、呈现方式或刺激显着性以及任务调度。自适应系统研究涉及多个领域,包括神经工效学、人为因素以及应用和生态背景下的人机交互,因此需要仔细考虑上述每个方面。本文概述了研究人员在设计基于心理状态的自适应系统时需要考虑的一些关键问题和方面,同时也促进了它们在长期连续使用过程中的应用,为更安全、更高效的人机交互铺平了道路。
AV的低水平系统,例如方向盘和踏板,ROS可以通过标准化命令来管理各种车辆的能力,包括尺寸,宽度和类型的不同车辆以及各种舰队,包括私人汽车,班车和卡车。这种方法简化了适应过程并简化了学习曲线,因为在不同的远程手工车辆之间过渡时,不需要ROS开发新的心理模型[63]。第三,Tele-satherance在安全性方面提供了重要的增强。来自美国运输部的数据表明,在美国,人为错误是94%的事故[30]。Waymo的最新发现进一步强调了自动驾驶汽车
职位名称 用户体验/用户界面 (UX/UI) 设计师 – 合同职位 描述 森林生态系统监测合作社 (FEMC) 是由美国森林服务局资助的地区合作社,总部位于佛蒙特大学,旨在提高对森林生态系统的物理、化学和生物成分的了解。FEMC 实现这一目标的主要手段是通过长期监测计划、广泛的数据档案以及创建使数据更易于访问和解释的产品。FEMC 目前正在开发一个交互式数据门户,以存储来自美国东北部森林的昆虫 eDNA 数据。该门户将供森林管理专业人员和学术研究人员使用。数据将以表格和地图格式显示,显示昆虫 DNA 的发现时间和地点。用户将能够查看与每个识别相关的元数据,包括识别的置信度,并注册接收电子邮件提醒,当数据库中添加了用户定义的感兴趣的物种的新识别时。带有摘要信息的仪表板将显示数据中的亮点,包括稀有或濒危物种的 DNA 检测、释放的生物防治物种、高调入侵物种、受管制的害虫等。FEMC 正在寻找 UX/UI 设计师来制定数据门户网站工具的设计规范。这是一个合同职位,接受提案的截止日期为 2025 年 3 月 7 日美国东部时间下午 5 点。所需输出包括:
在可持续能源生产和发展的框架中,电能存储 (EES) 是实现这一目标的关键因素。处于能源存储最前沿的是基于电化学存储的系统,例如电池和电化学电容器。多年来,电池和电双层电容器 (EDLC) 的完美组合已经出现,作为抵消这两种技术特定问题的一种方式,并代表了未来 EES 设备达到高能量和功率密度的新方向。作为一种战略性无材料低成本技术,非水混合超级电容器 (KIC) 代表了高功率应用的有前途的解决方案。这里介绍的 KIC 技术由活性炭正极和超大石墨负极组成,浸入乙腈基非水电解质和钾盐中 [1]。该技术发展的主要障碍是结果的不可重复性。对于锂离子电池,化成工艺是关键的制造步骤,可在负极表面形成稳定致密的固体电解质界面 (SEI),确保均匀稳定的性能。此步骤也被认为对 KIC 系统至关重要。得益于适当的化成工艺 [2] 的开发,可以形成均匀连续且 KF 含量低的 SEI,并且软包电池规模的性能现在稳定且可重复。此外,观察到了 SEI 中 KF 含量的变化与循环性能的变化之间的相关性。本文将介绍和讨论这一结果。
抽象的交通事故是年轻人中死亡的主要原因,这个问题今天造成了大量受害者。已经提出了几种技术来预防事故,是大脑计算机界面(BCIS)是最有前途的。在这种情况下,BCI被用来检测情绪状态,集中问题或压力很大的情况,这可能在道路上起着基本作用,因为它们与驾驶员的决定直接相关。但是,没有广泛的文献应用BCI来检测受试者在驾驶场景中的情绪。在这种情况下,需要解决一些挑战,例如(i)执行驾驶任务对情绪检测的影响以及(ii)在驾驶场景中哪些情绪更可检测到的情绪。为了改善这些挑战,这项工作提出了一个框架,该框架着重于使用机器学习和深度学习算法的脑电图来检测情绪。此外,已经设计了一个用例,其中有两种情况。第一种情况是聆听声音作为要执行的主要任务,而在第二种情况下,聆听声音成为次要任务,这是使用驾驶模拟器的主要任务。以这种方式,旨在证明BCI在这种驾驶方案中是否有用。结果改善了文献中现有的结果,可用于检测两种情绪(非刺激和愤怒)的准确性99%,三种情绪(非刺激性,愤怒和中性)的93%,四种情绪(非刺激性情绪(非刺激)(非刺激性,愤怒,中立和快乐)的精度为75%。