简介 – 界面科学与工程的定义、概念和发展。经典理论 – 基础理论。分类。表面/界面效应。表面能。表面张力。润湿现象。超润湿表面。静态/动态润湿。滑溜。界面热力学。毛细效应。相变。自然启发的界面工程 – 自然的表面/界面。自然的表面原理。尺度匹配原理。梯度原理。异质原理。其他功能表面设计原理。先进的界面技术 – 先进的界面材料。先进的制造方法。先进的表征方法。先进的可视化方法。先进的理论模拟。机器学习。多功能应用 – 清洁能源收集(水能、太阳能、热能及其混合发电)。能量储存(氢、电池)。清洁水技术(海水淡化、水分收集)。热冷却(数据中心)。生物应用(冷冻疗法)。其他工程系统(流体输送、粘合剂、防污、防冰)。
这项工作研究了铟镓砷 (InGaAs) SOI-FinFET 中界面缺陷在高性能应用中的可靠性。In 0.53 Ga 0.47 As 是一种很有前途的下一代晶体管材料,因为它具有高电子迁移率,这对于高速和高频应用至关重要。然而,界面陷阱电荷 (ITC) 的存在会严重影响器件的性能和可靠性。我们全面分析了 InGaAs SOI-FinFET 中的 ITC,研究了它们对线性性能参数(如 VIP2、VIP3、IIP3、IMD3、HD2 和 HD3)的影响。所有结果表明,优化界面质量对于提高 InGaAs SOI-FinFET 的可靠性和性能至关重要。这项工作为缺陷机制提供了宝贵的见解,并为改进制造工艺以实现更可靠的高性能 InGaAs-SOI-FinFET 提供了指导。因此,基于 InGaAs 的 FinFET 是最适合下一代使用的高性能半导体器件。 InGaAs 具有优异的电子迁移率和高饱和速度,为高频和高速应用提供了显著的优势,使其成为硅的理想替代品。
每次都微笑。模型有效值Unique@1kUnique@10k新颖性FCD测试TestSFAAE0.8811.0000.9950.9958.5739.117CharRNN0.9850.9990.9880.9948.75648.952VAE0.8341.0000.9960.9947.7038.141LatentGAN0.7241.0000.9990.9987.5958.160ORGAN0.6090.9960.9940.99939.80041.158GENiPPI(非接口)0.9990.9970.975 0.997 7.653 8.132 根尼皮 0.999 0.998 0.977 0.998 7.450 7.884
到加泰罗尼亚(ICN2),CSIC, 照片科学(ICFO), IMB-CNM(CSIC)剑, (ESI)可用。 请参阅doi:到加泰罗尼亚(ICN2),CSIC,照片科学(ICFO), IMB-CNM(CSIC)剑, (ESI)可用。请参阅doi:
问题描述:在此项目中,学生将采用深度强化学习(DRL)来发展机器人的操纵技巧,重点关注诸如接地操作和连接器插入等任务,这对于组装过程至关重要。选择特定的增强学习算法的灵活性允许探索各种DRL方法,例如基于价值的方法(例如DQN),基于策略的方法(例如PPO)或参与者 - 繁体架构。主要目标是设计一种控制策略,该策略使机器人能够通过与环境的互动来自主学习这些技能,从而通过反复试验和错误来提高其性能。
。cc-by-nc-nd 4.0国际许可证。根据作者/资助者,它是根据预印本提供的(未经同行评审的认证),他已授予Biorxiv的许可证,以在
Savoie Mont Blanc, CNRS, Laboratoire d'Anecy de Physique des Particules-In2p3, F-74000 Annecy, France 29 University of Naples "Federico II", I-80126 Naples, Italy 30 Ligo Laboratory, Massachusetts Institute of Technology, Cambridge, but 02139, USA 31 maastricht University, 6200 MD马斯特里奇,荷兰32 Nikhef,1098 XG阿姆斯特丹,荷兰33 Universit´e Libre de Brussels,布鲁塞尔,布鲁塞尔1050,比利时34 Institut Fresnel,Aix Marseille University E,CNRS,CNR,CNRS,Centrale Marseille,Centrale Marseille,Centrale Marseille,F-13013 Marseille,f-13013 Marseille,France 35 clise 35 cliss-sac-sac iclis in cliss in clis in clis in clis in clis in clis in clis in clise in 23 91405 ORSAY,法国36东京大学,东京,日本113-0033。 37巴塞罗那大学(UB),c。 MART´I i Franqu'es,1,08028西班牙,西班牙38 de f´ısica d'Als Energies(Ifae),巴塞罗那科学技术研究所,校园UAB,E-08193 Bellaterra(巴塞罗那),西班牙贝尔特拉(Bellaterra),西班牙39 Gran Sasso Science Institute Institute floriany(Gran Saquitute)盖恩斯维尔,佛罗里达州32611,美国41数学,计算机和物理科学系,Udine大学,I-33100,I-33100,意大利Udine,42 INFN,Trieste,I-34127,I-34127,意大利TriesteSavoie Mont Blanc, CNRS, Laboratoire d'Anecy de Physique des Particules-In2p3, F-74000 Annecy, France 29 University of Naples "Federico II", I-80126 Naples, Italy 30 Ligo Laboratory, Massachusetts Institute of Technology, Cambridge, but 02139, USA 31 maastricht University, 6200 MD马斯特里奇,荷兰32 Nikhef,1098 XG阿姆斯特丹,荷兰33 Universit´e Libre de Brussels,布鲁塞尔,布鲁塞尔1050,比利时34 Institut Fresnel,Aix Marseille University E,CNRS,CNR,CNRS,Centrale Marseille,Centrale Marseille,Centrale Marseille,F-13013 Marseille,f-13013 Marseille,France 35 clise 35 cliss-sac-sac iclis in cliss in clis in clis in clis in clis in clis in clis in clise in 23 91405 ORSAY,法国36东京大学,东京,日本113-0033。37巴塞罗那大学(UB),c。 MART´I i Franqu'es,1,08028西班牙,西班牙38 de f´ısica d'Als Energies(Ifae),巴塞罗那科学技术研究所,校园UAB,E-08193 Bellaterra(巴塞罗那),西班牙贝尔特拉(Bellaterra),西班牙39 Gran Sasso Science Institute Institute floriany(Gran Saquitute)盖恩斯维尔,佛罗里达州32611,美国41数学,计算机和物理科学系,Udine大学,I-33100,I-33100,意大利Udine,42 INFN,Trieste,I-34127,I-34127,意大利Trieste
界面适用于各种版本的摇摆内管中电池和非移动框架电池。我们获得专利的,精明的连接系统通过极其紧凑的设计和大量的交配周期来说服。即使在湿度,振动或冲击等极端条件下,可靠的数据和电力传输也是一个问题。对于42 V以上的变体,我们提供触摸保护。
计算理解视觉设计的基本结构,例如演示幻灯片和用户界面(UIS),使机器能够为盲人的人解释和描述视觉效果[44,51,72,84],将布局重新制定为新设备[37,38] [37,38],并基于用户能力个性化[20,54,56,77]。但是,构建启用这些功能的基础机器学习模型需要劳动密集型的数据收集和注释,这必须针对每种输入进行。我们提出了一种通过生成和渲染代码生成合成的结构化视觉效果的方法(图1)。我们的方法涉及三个阶段:首先,我们根据设计原理和目标任务创建具有大语言模型(LLM)的设计思想;其次,我们基于这些设计思想来生成标记的声明语言,例如HTML代码,以表示结构化的视觉效果;第三,我们过滤,后处理和渲染代码以生成最终的注释数据集。虽然我们的方法适用于各种类型的结构化视觉效果,但我们将方法应用于缺乏用于计算建模的高质量,公共数据集的两个应用程序域:演示幻灯片和UI屏幕截图。
摘要:电气接触材料越来越广泛地使用,但是现有的电动接触润滑剂仍然有很大的改进空间,例如抗衣性能和润滑寿命。由于出色的电气和润滑性能,石墨烯在润滑滑动电触点界面方面具有巨大的潜力,但缺乏相关的研究。一些研究人员研究了石墨烯在超低电流下涂有金色/锡涂层摩擦对之间的润滑性能。然而,尚未报道石墨烯在更广泛使用的电气接触材料上的润滑性能,例如铜及其合金在较大,更常用的电流或电压条件下。在本文中,我们研究了铜中石墨烯及其合金在常规参数下滑动电触点界面的润滑性能,这是通过四个方面探索的:不同的基板 - copper和brass,不同的测试方法,不同的测试方法 - 恒定伏特和恒定的电流和恒定电流,不同的正常负载和耐用性测试。实验表明,在上述测试方法和参数下,石墨烯可以显着减少黄铜和铜的摩擦和磨损,同时具有低接触电阻。我们的工作有望为电接触材料提供一种新的润滑剂,并有助于丰富石墨烯的摩擦学理论。关键字:石墨烯;滑动电触点;铜;减少摩擦;反衣低接触电阻