在准备使用R21/MATRIX-M™的大规模疫苗接种时,结合了二氢二氨酸蛋白酶,Piperaquine和单个低剂量底喹的大规模施用,我们评估了这种组合的耐受性,安全性和潜在相互作用,从而影响免疫性或药物动力学。120个健康的泰国志愿者被随机分配,以接收抗疟疾与疫苗接种(n = 50),单独接种疫苗(n = 50)或仅抗疟药(n = 20)。相隔一个月的三轮疫苗和抗疟疾。该疫苗单独耐受良好,并与抗疟药结合使用。没有参与者未能完成3剂疫苗课程。在疫苗免疫原性或单独或组合给出的管道喹的药代动力学中没有显着差异。这项研究支持针对R21/MATRIX-M™进行大规模疫苗接种的大规模试验,并在孟加拉国结合了质量抗疟药。
疟原虫造成非洲以外的大多数疟疾病例。与p不同。恶意,p。Vivax生命周期包括休眠的肝脏,催眠症,在没有蚊子传播的情况下会引起感染。一种针对p的有效疫苗。Vivax血液阶段将限制这种复发感染的症状和病理,因此可能在控制该物种的控制中起关键作用。p。vivax落后于p。恶性菌,有许多识别的tar-得到了几个转换为II期测试。相比之下,只有一个p。基于Divax血液阶段疫苗基于DUFFY结合蛋白(PVDBP)的候选疫苗已达到IA期,这在很大程度上是因为缺乏p的持续体外培养系统。Vivax限制了新候选人的系统筛选。我们使用了p之间的密切系统发育关系。vivax和p。knowlesi(人类红细胞中存在体外培养系统),以测试系统反疫苗学的可扩展性以识别和确定p的优先级。Vivax血液阶段目标。p。在哺乳动物的表达系统中,预测在红细胞侵袭中起作用的可在红细胞侵袭中起作用。 这些抗原中的八种用于产生多克隆抗体,这些抗体被筛选,以识别p中的直系同源蛋白的能力。 knowlesi。 knowlesi和嵌合p。 knowlesi基因与他们的p。在哺乳动物的表达系统中,预测在红细胞侵袭中起作用的可在红细胞侵袭中起作用。这些抗原中的八种用于产生多克隆抗体,这些抗体被筛选,以识别p中的直系同源蛋白的能力。knowlesi。knowlesi和嵌合p。knowlesi基因与他们的p。然后对这些抗体进行了测试,以抑制两种野生型P的生长和侵袭。使用CRISPR/CAS9进行修改以交换p。Vivax直系同源物。诱导抑制抗体的候选者
背景:RTS,S/AS01 是最先进的抗疟疾疫苗,目前正在马拉维、加纳和肯尼亚进行试点实施,估计每年将有 360,000 名儿童接种疫苗。在本研究中,我们将评估 RTS,S/AS01 与蚊帐的使用情况并估算成本效益。方法:使用 RTS,S/AS01 III 期试验和蚊帐流行率数据来确定马拉维利隆圭城市/城郊和农村地区疫苗接种的效果。使用成本数据计算三年内各种干预措施的成本效益。结果:由于蚊帐可降低疟疾发病率,并且假设疫苗效力均一,因此未使用蚊帐的参与者从 RTS,S/AS01 疫苗接种中获得的相对效益大于使用蚊帐的参与者。同样,由于利隆圭农村地区的疟疾发病率高于利隆圭市区,因此疫苗干预在农村地区的影响力和成本效益更高。我们估计,在利隆圭农村地区,为一名未使用蚊帐的儿童接种疫苗可在三年内预防 2 59 例(1 62 至 3 38 例)疟疾病例,相当于每例预防费用为 10 08 美元(7 71 至 16 13 例)。相反,为一名使用蚊帐的儿童接种疫苗可预防 1 59 例(0 87 至 2 57 例),相当于每例预防费用为 16 43 美元(10 16 至 30 06 例)。估计为利隆圭农村地区的 30,000 名儿童提供 RTS,S/AS01 的费用为 782,400 美元,可在三年内预防 58,611 例(35,778 至 82,932 例)疟疾病例。据估计,与仅提供疫苗的干预措施相比,提供疫苗接种和蚊帐(为没有蚊帐的人)的联合干预措施可预防更多疟疾病例,且成本效益同样高。解释:为了最大限度地预防疟疾,可以将疫苗接种和蚊帐分发计划结合起来。资助:环境、宿主遗传学和抗原多样性对疟疾疫苗效力的影响(1R01AI137410-01)
疟疾疫苗荣获年度创新奖 2024 年 10 月,R21/Matrix-M 疟疾疫苗被《时代》杂志评为年度创新奖。该疫苗由牛津大学和印度血清研究所开发,使用 Novavax 的佐剂技术,可放大疫苗产生的免疫反应。2023 年 12 月,世卫组织批准在疟疾流行的国家使用该疫苗。第三阶段试验表明,该疫苗耐受性良好,安全性良好。在季节性疟疾传播率较高的地区,该疫苗在 5-36 个月大儿童中 12 个月内的有效率为 75%(95% CI 71-79;p<0.001),在常年传播率较高的地区,该疫苗在 5-36 个月大的儿童中的有效率为 68%(61-74;p<0.001)。在美国,疾病预防控制中心已确认 2024 年有 1,772 例疟疾病例,主要发生在从非洲抵达纽约市、佛罗里达州迈阿密和加利福尼亚州洛杉矶的国际旅客中。
PfSPZ 疫苗(Sanaria Inc.,马里兰州罗克维尔)。反过来,疫苗开发计划正在建设人力资本和物质能力。EGMVI 建立了监管和道德监督,以确保遵守国际协调会议和良好临床实践,这是赤道几内亚历史上首次进口试验产品、获得道德批准和开展临床试验。EGMVI 已在赤道几内亚完成了三次疫苗试验、在坦桑尼亚完成了两次疫苗试验和一项疟疾发病率研究,并启动了一项 2,100 名志愿者临床试验的准备工作。人员正在国外接受高级学位培训,并接受了良好临床实践和特定方案方法的培训。新设施为国家研究机构奠定了基础。在这个富有远见、雄心勃勃的公私伙伴关系中,生物医学研究和开发正在促进赤道几内亚的重大改进。 EGMVI 计划使用 PfSPZ 疫苗与标准疟疾控制干预措施来消灭比奥科岛的 Pf 疟疾,并成为其他地方消灭疟疾运动的潜在典范。
尽管最近两种疟疾疫苗获得许可,但随着世界致力于消灭疟疾,对改进疫苗免疫原的需求仍然迫切。恶性疟原虫入侵红细胞是寄生虫生命周期中必不可少的步骤,先于疾病症状和寄生虫传播。针对 PfRH5 蛋白的抗体在预防红细胞入侵方面非常有效,最有效的生长抑制抗体与单个表位结合。在这里,我们使用基于 Rosetta 的蛋白质设计来生产一种集中的合成免疫原,该表位呈现在一个小的支架上。结构生物学和生物物理学被用来证明免疫原被正确折叠并以至少纳摩尔亲和力结合中和单克隆抗体。在免疫大鼠中,免疫原诱导的 PfRH5 靶向抗体抑制寄生虫生长的浓度比通过 PfRH5 免疫诱导的抗体低一千倍。最后,我们表明,用目标免疫原进行初免并用 PfRH5 进行加强可实现抗体质量和数量之间的最佳平衡,并诱导最有效的生长抑制反应。这种合理设计的疫苗免疫原现在可用作未来疟疾疫苗的一部分,单独使用或与其他免疫原联合使用。
在糖组学研究所,我们开发了一种新型全寄生虫疫苗平台技术,最初是在 Michael Good AO 教授的领导下为疟疾开发的。我们的疟疾疫苗技术有两种形式:1) 化学减毒全寄生虫候选疫苗;2) 新型全寄生虫脂质体候选疫苗。
我们了解到,全国各医疗机构都出现了常规抗原疫苗短缺的报道。目前,主要疫苗缺货,全国范围内,卡介苗、口服脊髓灰质炎疫苗和麻疹风疹疫苗等传统疫苗的库存不足两个月。此外,大多数其他常规儿童疫苗(包括 Gavi 支持的疫苗,包括肺炎球菌疫苗、轮状病毒疫苗、HPV 疫苗和疟疾疫苗)的库存水平也很低,只有三到六个月的库存。
尽管取得了这些进展,但抗击疟疾的进展却停滞不前,2022 年新增病例数与 2021 年相比增加了 500 万例。一系列因素包括:蚊子对最常见杀虫剂的抗药性、寄生虫对青蒿素类联合疗法(目前最好的药物)的抗药性、气候变化影响疟蚊的传播以及蚊子叮咬行为的改变。世卫组织指出,继续投资开发和部署新型疟疾疫苗和下一代工具将是实现 2030 年全球疟疾目标的关键。