脑转移性癌症构成了重要的临床挑战,患者的治疗选择有限,预后不良。近年来,免疫疗法已成为解决脑转移的一种有前途的策略,比传统治疗具有明显的优势。本评论探讨了在脑转移性癌症的背景下肿瘤免疫疗法不断发展的景观,重点是肿瘤微环境(TME)和免疫治疗方法之间的复杂相互作用。通过阐明TME内的复杂相互作用,包括免疫细胞,细胞因子和细胞外基质成分的作用,该综述突出了免疫疗法重塑脑转移治疗范式的潜力。利用免疫检查点抑制剂,细胞免疫疗法和个性化治疗策略,免疫疗法有望克服血脑屏障和免疫抑制脑转移的微观环境所带来的挑战。通过对当前研究发现和未来方向的全面分析,这项综述强调了免疫疗法对脑转移癌管理的管理性影响,为个性化和精确的治疗干预提供了新的见解和机会。
每年,全球约有1000万人死于癌症(1)。目前,癌症的主要治疗方法包括手术切除、化疗、放射治疗、免疫治疗、靶向治疗及中医药治疗等,但每种方法都有各自的临床局限性,以化疗为主的全身治疗仍然发挥着至关重要的作用,特别是近年来逐渐兴起的靶向治疗和免疫治疗,在某些肿瘤的治疗中显示出一定的疗效。然而,无论是化疗、靶向治疗还是免疫治疗,都存在着广泛的耐药性,这会阻碍肿瘤的治疗并导致疾病复发(2)。因此,研究肿瘤耐药性的产生机制、防止耐药细胞的出现仍然是当前科研人员面临的重大挑战。
癌症仍然是全球死亡的主要原因之一。尽管药物治疗的进展,但当前的治疗策略,包括放疗,化学疗法,靶向治疗和手术切除,但并未显着降低癌症的全球发病率和死亡率。肿瘤学家由于与标准疗法相关的不利副作用而制定有效的治疗计划时面临着巨大的挑战。因此,迫切需要更有效且耐受良好的癌症治疗方法。姜黄素是一种天然发生的化合物,它因其多种生物学特性而引起了显着关注。临床前研究和临床试验都强调了姜黄素在癌症治疗中的潜力,证明了其通过多个细胞和分子途径抑制各种癌细胞类型的增殖的能力。本文研究了抗肿瘤特性,以及包括姜黄素靶向的细胞信号通路,包括与癌症发育有关的细胞信号通路,并探讨了将姜黄素作为一种可行的抗癌治疗的挑战。
从http://journals.lww.com/epidem下载bhdmf5ephkav1zeoum1tqfn4a+kjlhezgbsiho4xmi0hcywcx1 awnyqp/ilqrhd3i3d0odryi7tvsfl4cf3vc1y0abggqzxdtwnfkzbytws = on 06/12/2023
蛋白质后翻译修饰(PTMS)代表细胞调节的关键方面,在蛋白质合成mRNA后发生。这些修饰包括磷酸化,泛素化,乙酰化,甲基化,糖基化,糖基化,sumoylation和棕榈酰化,在调节蛋白质功能中起关键作用。PTM会影响蛋白质的定位,稳定性和相互作用,从而响应内部和外部刺激来策划各种细胞过程。失调与一系列疾病,例如癌症,炎症性疾病和神经退行性疾病有关。ufmylation是一种PTMS,最近因其在众多细胞过程中的调节作用而获得了突出的,包括蛋白质稳定性,对细胞应激的反应以及关键信号通路影响细胞功能。本评论强调了ufmylation在肿瘤发展和发展中的关键功能,强调了其作为治疗靶标的潜力。此外,我们讨论了ufmyration在肿瘤发生和恶性进展中的关键作用,并探索其对癌症免疫疗法的影响。本文旨在详细概述ufmylation的生物学功能,并提出靶向ufmylation如何增强癌症免疫疗法策略的有效性。
结果:癌症免疫疗法研究中TCM的发表率从1994年到2018年稳步增长,从2018年到2023年迅速增长。中国和TCM大学在这一领域取得了最大的研究进步。研究最多的癌症类型是肝脏,肺和结直肠癌。然而,很少有关于上呼吸道肿瘤,宫颈癌和黑色素瘤的研究,这值得更多关注。研究趋势已逐渐从体内和体外模型转变为临床效率。同时,研究重点从化合物TCM制剂或成分类别转变为特定的药效成分,以及从细胞因子转变为免疫检查点的相应靶标。一般而言,分子对接与多摩学分析相结合是TCM中一种流行而流行的研究方法,用于癌症免疫疗法,帮助研究人员更全面,准确地了解TCM在癌症免疫疗法中的机制。通过分析文献,很明显,基于TCM的免疫疗法应在整个癌症过程中有助于有效的维持或辅助治疗,而不仅仅是在后期阶段。
化学性侵犯转移性结直肠癌(MCRC)的患者预后不佳。使用程序性细胞死亡蛋白1(PD-1)/程序性细胞死亡配体1(PD-L1)抑制剂的应用鼓励改善MCRC微卫星不稳定性高(MSI-H)/不匹配修复维修剂(DMMR)的生存。不幸的是,对于MCRC而言,微卫星稳定(MSS)/优先不匹配修复(PMMR)无效,占MCRC的95%。放射疗法可以通过直接杀死肿瘤细胞并诱导阳性免疫活性来促进局部控制,这可能有助于协同进行免疫疗法。我们介绍了一名先进的MSS/PMMR MCRC患者,该患者在第一线化学疗法,姑息手术和二线化学疗法结合靶向疗法后患有进行性疾病(PD)。然后,患者接受了PD-1抑制剂的疗法,结合了放射疗法和粒细胞 - 巨噬细胞刺激因子(GM-CSF)。根据实体瘤版本1.1(recist1.1)的反应评估标准,该患者在三年后与无进展生存期(PFS)的三重疗法后显示了完全反应(CR),迄今为止已有2年以上的时间。患者除疲劳(1级)外没有其他明显的不良反应。三合一疗法为转移性化学难治性MSS/PMMR MCRC患者提供了有希望的策略。
摘要:活性氧 (ROS) 主要由线粒体电子传递链和过氧化物酶体和内质网中的 NADPH 氧化酶产生。抗氧化防御通过解毒酶和分子清除剂(例如超氧化物歧化酶和谷胱甘肽)来抵消 ROS 的过量产生,以恢复氧化还原稳态。氧化还原景观的突变可诱发致癌作用,而 ROS 产生的增加可促进癌症发展。此外,癌细胞可以增加抗氧化剂的产生,从而对化疗或放疗产生耐药性。研究一直在开发针对癌症氧化还原景观的药物。例如,抑制氧化还原景观中的关键参与者旨在调节 ROS 的产生,以防止肿瘤发展或使癌细胞对放射治疗敏感。除了单个细胞的氧化还原景观外,替代策略还针对多细胞水平。细胞外囊泡(例如外泌体)对于缺氧肿瘤微环境的形成至关重要,因此被探索作为癌症治疗中的靶标和药物输送系统。本综述总结了当前癌症氧化还原领域的药物和实验干预措施。
对妇科癌和宿主免疫力之间的复杂串扰进行了广泛的研究,揭示了对肿瘤发育的迷人见解。包括各种非肿瘤细胞和可溶性介体的肿瘤微环境(TME)在支持妇科癌症发展中起着关键作用(1,2)。在这些元素中,肿瘤 - 纤维化淋巴细胞(TILS)成为捍卫者,配备了识别和消除癌细胞。此外,TME包括与癌症相关的纤维细胞(CAF),内皮细胞,趋化因子,细胞因子,生长因子和抗体,共同调节癌症的启动,进步,甚至治疗反应(3-5)。癌细胞和其他TME成分释放了许多可以抑制或激活免疫细胞功能的免疫调节信号,从而有效地塑造了免疫反应(6-11)。因此,根据其组成,TME有可能将免疫系统从抗肿瘤模式转换为肿瘤状态(图1)。令人鼓舞的是,针对TME成分的治疗方法,包括髓样衍生的抑制细胞(MDSC),与肿瘤相关的巨噬细胞(TAM)和调节性T细胞(Tregs)(Tregs),并在临床前和临床研究中都表现出了令人鼓舞的抗肿瘤活性(12-18)。因此,探索TME的预测和治疗价值是推进妇科癌症治疗的明显希望。在这里,我们发表了一篇研究主题,介绍了六篇文章,重点介绍了针对妇科癌症的TME靶向治疗策略。Yu等人的评论。强调了血管生成在癌症免疫疗法的效率中的关键作用,特别是在卵巢癌的背景下。概述了血管生成,新血管的形成,不仅支持肿瘤的生长和转移,而且显着影响TME,从而影响了免疫疗法(例如免疫检查点抑制剂(ICIS))的成功。通过通过异常肿瘤脉管系统促进血液灌注不足,缺氧和免疫逃避,血管生成为有效的免疫疗法带来了艰巨的障碍。抗血管生成疗法被贝伐单抗等药物示例,其针对这些血管异常,不仅破坏了肿瘤血液供应,而且可以潜在地重塑TME,从而增强了抗肿瘤免疫力。临床和临床前研究表明
癌症免疫疗法,例如免疫检查点阻滞(ICB),已成为有效癌症治疗的开创性方法。尽管具有很大的潜力,但临床研究表明,当前对癌症免疫疗法的反应率是次优的,主要归因于某些类型的恶性肿瘤的免疫原性低。免疫原性细胞死亡(ICD)代表一种能够增强肿瘤免疫原性并激活免疫能力宿主中肿瘤特异性和适应性免疫反应的调节细胞死亡(RCD)的形式。因此,对ICD及其进化有更深入的了解对于制定更有效的癌症治疗策略至关重要。本综述仅关注与ICD模式及其机械见解有关的历史和最新发现,尤其是在癌症免疫疗法的背景下。我们最近的发现也被突出显示,揭示了在多动型I型IFN信号传导过程中,非典型干扰素(IFN)刺激基因(ISGS)促进了一种ICD诱导模式,包括Polo样激酶2(PLK2)。审查通过讨论ICD的治疗潜力结束,并特别注意其在癌症免疫疗法领域内的临床前和临床环境中的相关性。