糖尿病性肾脏疾病(DKD)是糖尿病发病率和死亡率的主要原因。这是西方国家终末期肾脏疾病(ESKD)的主要原因,并导致多达一半的事件病例[1]。但是,大多数人永远不会到达ESKD,因为它们更有可能死于心血管疾病(CVD)。随着肾功能下降,CVD的风险几乎呈指数增长[2-4]。不管病因如何,慢性肾脏疾病(CKD)进展的主要特征是细胞外基质成分的病理沉积,可以触发肾纤维化并导致ESKD [5]。纤维化芯的主要结构成分是胶原蛋白,纤维化肾脏中最突出的胶原蛋白之一是胶原蛋白III。c3m是胶原蛋白III的降解产物,由基质金属蛋白酶(MMP)-9产生。c3m因此反映了间隙基质中III型胶原蛋白的营业额,可以被视为纤维化活性的标记[6]。研究表明,在DKD [7]中,MMP-9的活动增加,血浆中MMP-9的水平增加是2型糖尿病患者(T2D)患者中微量白蛋白尿的危险因素[8]。尿液中尿液中的C3M水平升高与患有1型糖尿病患者的CKD严重程度有关(T1D)[9],并且与其他CKD队列中疾病的严重程度和进展[6,10]有关。C3M尚未在2型糖尿病和糖尿病肾脏疾病的患者中进行研究。内皮功能障碍和炎症在纤维化的发作和疾病中起重要作用。在这项研究人群中先前报道的数据中,内皮功能障碍和炎症的标志物与CVD和全因凡人造成独立相关[11]。肾脏活检是检测肾纤维化的唯一当前方法。在临床可检测到的肾脏疾病之前可能存在纤维化,因此纤维化生物标志物可能可能被用作一种非侵入性方法,用于较早发现疾病。此外,纤维化生物标记物可用于疾病监测和评估治疗反应。在这项研究中,我们调查了基线时血清和尿液测量的C3M是否与炎症和内皮功能障碍的标记有关,以及在T2D和Microalbuminuria的随访期间,在随访中,这是否是慢性肾脏疾病,CVD事件的发生以及致命性的风险标志。
*通信:Nobuhiko Hoshi,动物分子形态实验室,23动物科学系,科比大学农业科学研究生院,1-1 Rokkodai,Nada,Kobe,Koobe,24 Hyogo 657-8501,日本;电子邮件地址:nobhoshi@kobe-u.ac.jp(N。Hoshi)。25
方法与结果:2012 年,1,214 名日本社区居民(年龄 ≥ 65 岁)接受了脑磁共振成像 (MRI) 扫描和全面健康检查。本研究调查了尿白蛋白:肌酐比 (UACR) 和估计肾小球滤过率 (eGFR) 与 WMH 体积与颅内容积 (WMHV : ICV) 比的关联,以及 UACR 和 WMHV : ICV 比的组合与认知能力下降和死亡风险的关联。整个研究人群的 WMHV : ICV 比的几何平均值为 0.223%,在调整潜在混杂因素后,随着 UACR 水平的提高而显著增加(正常白蛋白尿为 0.213%,微量白蛋白尿为 0.248%,大量白蛋白尿为 0.332%;P 趋势 =0.01)。相反,eGFR 与 WMHV : ICV 比值之间无明显关联。与白蛋白尿正常且 WMHV : ICV 比值较小(<0.257% [中位数])的受试者相比,白蛋白尿且 WMHV : ICV 比值较大(≥0.257%)的受试者在基线时认知能力下降的概率和随访期间全因死亡的概率更高。
紫杉醇类药物(紫杉醇和多西他赛)在晚期肉瘤的治疗中起着重要作用。白蛋白结合型紫杉醇(nab-paclitaxel)是一种新型紫杉醇,与紫杉醇和多西他赛相比具有许多优势。nab-paclitaxel目前被批准用于治疗晚期乳腺癌、非小细胞肺癌和胰腺癌。但尚未见nab-paclitaxel在肉瘤中的疗效综述。本文首先比较了nab-paclitaxel、紫杉醇和多西他赛的异同,然后根据已报道的临床试验结果总结了nab-paclitaxel对各种非肉瘤恶性肿瘤的疗效,并总结了nab-paclitaxel在肉瘤中的疗效和临床研究进展。本综述将为nab-紫杉醇在临床肉瘤治疗研究中的应用以及临床试验的设计提供参考。
1 韩国科学技术研究院 (KIST) 生物医学研究所,首尔 02792,韩国;ricky@kist.re.kr (HC);mks@kist.re.kr (MKS);haehwan@kist.re.kr (SY);t17192@kist.re.kr (SS);phoenix0310@kist.re.kr (YM); 218843@kist.re.kr (JK) 2 首尔国立大学材料科学与工程系,首尔 08826,韩国 3 高丽大学 KU-KIST 融合科学技术研究生院,首尔 02841,韩国 4 高丽大学生物系统与生物技术系,首尔 02841,韩国 5 高丽大学生物工程系,首尔 02841,韩国 6 首尔国立大学药学院药科学研究所,首尔 08826,韩国;yrbyun@snu.ac.kr * 通信地址:chahn@snu.ac.kr (C.-HA);kim@kist.re.kr (KK) † 这些作者对这项工作做出了同等贡献。
摘要:白蛋白结合域衍生的亲和蛋白 (ADAPT) 是一类小型折叠工程支架蛋白,在靶向癌症肿瘤方面具有巨大前景。在这里,我们通过与白蛋白结合域 (ABD) 融合延长了 ADAPT 的体内半衰期,该蛋白靶向人表皮生长因子受体 2 (HER2),并用高细胞毒性有效载荷 mertansine (DM1) 武装它,以研究其体外和体内特性。所得药物偶联物 ADAPT6-ABD-mcDM1 保留了与其预期靶标(即 HER2 和血清白蛋白)的结合。此外,它能够特异性地结合具有高 HER2 表达的细胞,被内化,并显示出强毒性,IC 50 值范围为 5 至 80 nM。相反,对于具有低 HER2 表达的细胞没有发现毒性作用。体内实验中,用 99m Tc 放射性标记的 ADAPT6-ABD-mcDM1 在大多数正常器官中的摄取率较低,主要排泄途径为肾脏。24 小时后肿瘤的摄取率为 5.5% ID/g,高于除肾脏外所有正常器官在此时间点的摄取率。通过预先注射过量的单克隆抗体曲妥珠单抗(在 HER2 受体上具有重叠表位)可阻断肿瘤的摄取。总之,基于亲和蛋白 ADAPT 平台的半衰期延长药物偶联物有望进一步发展为靶向癌症治疗。
图 1 CT26 细胞中白蛋白摄取的特征。(A)将细胞与 FITC 标记的白蛋白一起孵育。通过流式细胞术测定 FITC 阳性细胞(散点图,R2)和平均 FITC 荧光强度(条形图)(ex/em:488/530 nm,荧光强度标准化为自发荧光对照)。(B)通过流式细胞术测定内吞抑制剂 M b CD、CHP 和 EIPA(1 小时预处理)对 3 小时后 FITC 标记白蛋白摄取的影响。(A)和(B)中的值是三个独立实验的平均值 SD。通过单因素方差分析和 Dunnett 多重比较检验检验统计学显着性(* p < 0.05,** p < 0.01 和 *** p < 0.001)。 (C) 通过共聚焦显微镜验证了 FITC 标记白蛋白 (绿色) 的摄取和三种内吞抑制剂的影响。细胞核 (蓝色) 和膜 (红色) 分别用 DAPI 和 WGA 共染色。图像显示所有三个通道的叠加。 (D) 未经治疗的小鼠的 sc CT26 肿瘤中白蛋白含量的免疫组织化学分析 (用 20 和 63 物镜进行的显微镜检查)。细胞核和白蛋白分别用苏木精 (紫色) 和 3,3 0 -二氨基联苯胺 (棕色) 显影。 (E) 用 16.5 mg kg 1 荧光素标记的马来酰亚胺 (绿色) 治疗 CT26 小鼠。30 分钟和 5 小时后收获肿瘤,然后对细胞核 (DAPI,蓝色) 和血管 (内粘蛋白,红色) 进行免疫荧光染色。使用 40 倍物镜通过荧光显微镜进行评估。图像显示所有三个通道的叠加。使用 Definiens 软件计算每平方毫米的荧光强度(左图中的条形图)。荧光强度值以两个不同肿瘤样本的平均值 SD 表示。
1产品描述和重要笔记 - 生物纯净的人血清白蛋白是一种无XENO的补充剂,尤其有资格在未分化的多能人体胚胎(HES)细胞(HES)细胞和诱导的多能茎(HIPS)细胞的生长和扩展中,均具有依赖和饲养者的无饲料和饲养者的条件。人血清白蛋白(HSA)是一种培养基补充剂,其中含有高分子量的高度溶解渗透蛋白。-HSA可有效地维持HES细胞生长和扩张。它在维持细胞膜稳定性方面特别有价值。HSA既可用于结合阴离子,阳离子和中性分子,又有其隔离和稳定多种离子和其他小分子的能力。
如今,随着人口迅速增长和全球衰老,癌症已成为人类死亡的主要原因。 1癌症的常规临床治疗方法,包括手术干预,化学疗法和放疗,仍然具有de neciencies。 手术治疗无法去除所有肿瘤细胞,有时甚至会导致肿瘤细胞的扩散。 由于缺乏肿瘤特异性城市,放疗和化学疗法都会在肿瘤治疗期间引起严重的局部或全身性影响。 2此外,在化学疗法辐射过程中,肿瘤组织或细胞也将对化学治疗药物和放射线具有抵抗力。 基于上述治疗方法的局限性光热疗法(PTT)是一种新型的非侵入性癌症治疗策略,由于其高效,易于操作,可忽略不可效应和良好的生物利用度,因此引起了广泛的关注。 3,4 PTT的核心是光热剂(PTA),可以将近红外(NIR)光转化为细胞毒性热,以杀死肿瘤细胞。 5重要的是,PTT可以忽略细胞抗性的影响,因为它通过诸如蛋白质变性和膜破裂等物理机制诱导细胞死亡。 6此外,它可以实现高精度,因为仅当将NIR光和PTA组合在一起时才产生热效应。 已经建立了广泛的效果,以开发多种类型的无机和有机PTA。 无机纳米材料,包括金纳米颗粒,7,8 sul nanoparticles,9,10和如今,随着人口迅速增长和全球衰老,癌症已成为人类死亡的主要原因。1癌症的常规临床治疗方法,包括手术干预,化学疗法和放疗,仍然具有de neciencies。手术治疗无法去除所有肿瘤细胞,有时甚至会导致肿瘤细胞的扩散。由于缺乏肿瘤特异性城市,放疗和化学疗法都会在肿瘤治疗期间引起严重的局部或全身性影响。2此外,在化学疗法辐射过程中,肿瘤组织或细胞也将对化学治疗药物和放射线具有抵抗力。基于上述治疗方法的局限性光热疗法(PTT)是一种新型的非侵入性癌症治疗策略,由于其高效,易于操作,可忽略不可效应和良好的生物利用度,因此引起了广泛的关注。3,4 PTT的核心是光热剂(PTA),可以将近红外(NIR)光转化为细胞毒性热,以杀死肿瘤细胞。5重要的是,PTT可以忽略细胞抗性的影响,因为它通过诸如蛋白质变性和膜破裂等物理机制诱导细胞死亡。6此外,它可以实现高精度,因为仅当将NIR光和PTA组合在一起时才产生热效应。已经建立了广泛的效果,以开发多种类型的无机和有机PTA。无机纳米材料,包括金纳米颗粒,7,8 sul nanoparticles,9,10和
目的:结肠癌的化学疗法需要改善,以减轻与细胞毒性药物相关的严重不良反应(AE)。这项研究的目的是开发一种具有实用应用潜力的新型靶向药物输送系统(TDD)。方法:TDD是通过在白蛋白纳米颗粒(NP)中加载多西他赛(DTX)构建的,这些纳米颗粒(NPS)用核糖素靶向的适体(AS1411)进行了功能化。结果:TDD(APT-NPS-DTX)的平均大小为62 nm,负电荷为-31.2 mV。dtx从白蛋白NP中释放出典型的持续发行轮廓。通过表达核仁素的CT26结肠癌细胞与对照细胞相比,优先摄入适体引导的NP。体外细胞毒性研究表明,APT-NPS-DTX显着增强了CT26结肠癌细胞的杀戮。重要的是,与未靶向的药物递送相比,APT-NPS-DTX治疗sig sig sig sig可提高抗肿瘤功效,并延长了CT26含有小鼠的存活,而不会提高系统性毒性。结论:结果表明APT-NPS-DTX在靶向治疗结肠癌方面具有潜力。关键字:适体,纳米颗粒,结肠癌,针对药物输送系统