摘要。由于人为强迫,水生系统的快速变化正在为有机体和社区带来挑战性的条件。现在需要更好地理解环境压力源的相互作用,以及将来,这对于确定生态系统对这些扰动的响应至关重要。这项工作描述了一个自动化的Ex eriposm扰动系统,该系统可以在受控设置中操纵水生媒体的几个变量。此扰动系统部署在Kongsfjorden(Svalbard);在该系统中,将来自峡湾的环境水加热并与多因素设计中的淡水混合,以研究中库群岛中混合kelp群落对未来北极条件的反应。该系统采用了一种拟定的动态偏移场景,其中将标称的调为升温作为设定值以高于实时环境条件的设定值,以模拟未来的变暖。以类似的方式应用了新鲜度成分:盐度的降低是基于峡湾中温度 - 平衡关系跟踪温度偏离的。该系统充当自动混合歧管,调整了温暖和冷藏的环境海水的流量,无操纵的环境海水和淡水熟悉,作为单个混合介质的单一来源到单个Meso-Cosms。这些条件是通过连续
这项研究旨在确定生物代理(Trichoderma hazianum)的好处,以减轻NaCl应力对日期棕榈分支的不利影响(Phoenix dactylifera L.)氯化钠(NaCl)不同浓度的浓度(NaCl)(NACL)(NaCl)(0、5、10、15、20、20、20、20、20和25 ds M -1)与颜色相关的颜色效果上的颜色是相互影响的。在存在和不存在生物代表t. harzainum的情况下,酶,总脯氨酸,总酚类和过氧化氢分支。研究的结果表明,从10-20 ds m -1中提高NaCl浓度并不影响马铃薯葡萄糖琼脂(PDA)培养基中Harzianum的菌丝生长菌落。结果表明,光合色素(叶绿素和类胡萝卜素),过氧化物酶和过氧化氢酶的水平显着增加,蛋白质酶的总脯氨酸和总酚含量在日期棕榈中的分支中使用T. harzainum的应用。较高浓度的NaCl导致更高水平的氢过氧化。此外,盐刺激了抗氧化酶(例如过氧化酶和过氧化物酶)的产生。该研究表明,施用生物代理t. harzianum后,盐胁迫对日期棕榈分支的负生理和生化作用显着降低。这项研究表明,trichoderma具有促进植物生长的能力,可用于增加NACL应力条件下棕榈分支的生长。
受盐的土壤是影响农作物植物产量的强大环境变量之一,因为不同的农作物植物易受着各种盐浓度水平的影响,这是低地下水位水平的结果以及适当的灌溉实践。由于全球干旱地区每年没有足够的降雨量,因此可以从植物根部积累的土壤盐分可以增强土壤盐度。为了超越土壤盐度问题,需要采取许多适应,缓解政策和战略策略。可以通过使用适当的灌溉,浸出,耐盐的更好的农作物品种和有益的土壤微生物来缓解它。土壤微生物促进有机物的解离,增加养分的可用性,改善植物遗传多样性,促进植物生长,促进激素,并最终提高作物生产率,环境稳定性,生态系统服务和粮食安全。
特质酵母处理 - 酵母+酵母菌植物高度(cm)59.16 66.51(+12)分支机构数量植物-1 05.00 06.13(+23)叶植物的数量-1 84.13 90.38(+07)叶(+07)叶(+07)叶(+2)19.83 23.83 23.13(+2工厂)种子植物-1 39.38 52.63(+34)10种种子的重量11.84 13.40(+13)干重植物-1 19.98 22.64(+13)种子产量植物-1 69.66 83.71(+20)个体值是在不同的酵母处理下的八个复制的平均值。值表明从对照处理(-yeast)到(+酵母)的百分比增加。
植物不断受到各种环境胁迫,这些胁迫对其生长、发育和生产力产生重大影响。其中,干旱、盐度和极端温度是最有害的。了解植物抗逆性的潜在机制对于制定提高作物抗逆性和确保粮食安全的战略至关重要。本综述全面探讨了植物对干旱、盐度和极端温度的生理、生化和分子耐受机制。我们讨论了胁迫感知和信号传导、渗透调节、抗氧化防御、激素调节以及遗传和表观遗传修饰的作用。此外,我们还重点介绍了旨在提高作物抗逆性的育种和生物技术方法的最新进展。
氮固定子是微生物的重要生理组之一。它们在共生和自由上吸收大气氮[1,2,3]。在Ashby培养基中生长的细菌是自由生活的有氧氮固定剂。它们还从土壤空气中吸收氮,并用氮气富集土壤。在氮平衡中非常重要。因为土壤中的氮,包括矿物氮,是最小因子[5,6,8]。氮缺乏对土壤生育能力以及植物生长和发育产生负面影响。同时,氮气积累是一个非常复杂的过程,很难实施它。氮流失的简易通过在氮平衡中起着非常负面的作用。氮。因此,土壤中有机和矿物氮的量大大减少。因此,在没有赤字的情况下保持氮平衡是一个非常困难的问题[4,9,7,10,11]。这些氮固定器的积极作用很大。但是,许多因素可能对氮固定器的数量和活性产生正面或负面影响。这种情况也存在于布哈拉沙漠草地的冲积土壤中。布哈拉绿洲草地的冲积土有不同程度的盐度。非盐草草地冲积土壤非常罕见[12,13,14,15,16,17]。这种情况还会影响自由生活有氧氮固定器的生长和发展
属于属于生理组的微生物具有相似的功能并参与特定活动。重要的土壤微生物是参与氮固定,植物残留降解,硝化,氨化和硝化过程的微生物。它们主要属于细菌的分类类别。它们是在具有选择性进食的特定设置中找到的。,氨磷酸盐占据了最重要的占主导地位。氨餐剂确保通过参与氨化过程来保留氮的有机分子形成铵。肉肽琼脂用于培养和量化氨掺杂剂。此外,还进行了培养基中所有微生物的普查。因此,在上一章中,还以牺牲细菌为代价考虑了氨云母。
抽象的嫁接幼苗已成为世界许多地方的重要农业实践,用于生产和保护葫芦,免受生物和非生物胁迫的影响。盐度是埃及黄瓜的生长和生产力降低的主要非生物胁迫之一。This study aims to investigate the performance of commercial greenhouse cucumber hybrid (Hesham) grafted onto some genotypes and F1 hybrids rootstocks under salinity stress conditions (Salinity of the experimental soil and irrigation water were about 70.9 and 2.77 dS/m, respectively), at El-Anwar Farm, Cairo-Alexandria Desert Road, during summer seasons of 2020 and 2021under shade house 状况。此实验是在带有3个重复的随机完整块设计中进行的。与未移植对照相比,该实验包含14种处理,除7种F1杂交砧木外,还包括六种基因型rootstocks。结果表明,与未嫁接的植物相比,两个季节的植物高度,叶子面积,水果长度,果实长度,果实长度,果实长度,水果直径,产量和光合作用的植物高度,叶子面积,果实长度,果实长度和光合作用相比,与未枝的植物相比,植物的身高,果实重量,果实长度和光合作用可显着改善。 534556和siceraria pi 554556 x lagenaria siceraria pi 491365茎长度比第一个季节的非移植植物更大。在两个季节中嫁接到C. Maxima X C. Maxima X C. Maxima X C. Maxima X C. Moschata rootstock中,碳水化合物含量的最高值是在两个季节中估计的,而在两个季节中嫁接到Kalabsha rootstock上的黄瓜叶中估计了最高的脯氨酸含量。关键字:cucumis sativus,盐度压力,砧木,
土壤盐度在原发性和次要盐度中有区别。主要的是岩石瓦解的自然过程的结果,该过程释放可溶性盐,例如钠,钙和镁,硫酸盐和碳酸盐,硫酸盐和碳酸盐,通过风和雨水沉积在土壤溶液中。在此过程中最容易运输的盐是氯化钠。这项研究研究了盐度应激对盐敏感和耐盐降低品种(通常称为mung豆)的影响。在培养皿中进行了实验,并应用了120 mM NaCl。这项研究揭示了V. radiata的盐敏感和耐盐线的明显差异。盐敏感品种的芽和根新鲜和干生物量的降低。相比之下,耐盐线的生物量最小降低(新鲜干燥)。07006MB和08009MB在120mm NaCl下的新鲜和干芽生物量略有增加。同样,在07006MB和14005MB中,根新鲜生物质略有增加,但是与120 mm NaCl以下的其他线相比,在14005MB线中观察到干根生物量最大。这些发现为耐盐品种的适应性策略提供了宝贵的见解,为有针对性的育种计划提供了旨在增强这种具有经济意义的豆类盐度弹性的目标的基础。总而言之,这项研究加深了我们对盐度应激对Vigna radiata线生长模式的影响的理解。它为开发能够在盐水环境中繁荣发展的强大农作物品种奠定了基础。