2024年7月25日 — 5项标准及测试项目。见附表。 6 一般事项。(1)需提交的文件。见附表。 合同 ...
我们的旅游业促进了我们城市的经济增长,也促进了社区的福祉。我们希望游客在离开时能更加欣赏堪培拉,感到充实、受教益,并愿意向他人介绍这里提供的优质、多样化体验。我们还希望游客认为我们的城市和地区是一个适合居住、学习、工作和投资的好地方,享有进步、包容和欢迎所有人的美誉。
摘要大气压力等离子体射流(APPJS)用于治疗表面(无机,有机和液体)的最佳用途取决于能够控制等离子体生成的反应物种流向表面的流动。典型的APPJ是一种稀有的气体混合物(RGM),该混合物(RGM)流过施加电压的管,产生RGM等离子体羽流,可延伸到环境空气中。由于电离波(IW)需要较高的电场才能传播到空气中,因此RGM等离子体羽流由周围的空气罩引导。将环境空气与RGM等离子体羽流的混合确定活性氧和氮种(RONS)的产生。AppJ通常是垂直于被处理的表面的定向。然而,由于AppJ传播性能的变化和所得的气体动力学,APPJ相对于表面的角度可能是控制反应性物种到表面的一种方法。在本文中,我们讨论了针对两个点的计算和实验研究的结果 - 具有或不具有指导气体罩的Appj中的IWS作为AppJ相对于表面的APPJ角度的函数;并使用该角度控制薄水层的血浆激活。我们发现,从等离子体管中传播到同一气体环境中的APPJ缺乏裹尸布引导的喷气机的任何方向性特性,并且随着等离子管的角度的变化,很大程度上遵循电场线。引导的Appjs随着角度的变化而同轴繁殖,并垂直向表面垂直转动,仅在表面上方只有几毫米。APPJ的角度产生不同的气体动态分布,从而可以对转移到薄水层的RON的含量进行一定程度的控制。
L 屋顶路缘,平顶或斜顶(拆下运输) L 服务平台(符合 OSHA 标准) L 水平型号的百叶窗式集气室 L 120 伏 GFI 插座和照明 L TEFC 风扇电机,高效和汽车规格选项 L 电机缺相保护 L 电机皮带护罩 L 振动隔离(外部) L 排气循环(大多数型号) L 蒸发冷却包 L 带冷冻水或 DX 线圈的冷却部分 L 带热水、蒸汽或电线圈的加热部分 L 100% OA 型号的空间温度控制 L DDC 微处理器控制 L 温和天气状态 L 燃烧器警报喇叭 L 清除计时器(30 秒) L 三相电源监视器 L 烟雾探测器 L Magnahelic 和 Photohelic 仪表 L FM 或 IRI 气体歧管 L 天然气转丙烷(LP) 转换开关 L 高气压调节器 L 低气压燃烧器组件(无需额外费用)
DNA2VEC载体。单词嵌入被广泛用于自然语言处理(NLP),可使用固定长度向量有效地将单词映射到高维空间中[19]。这个概念也已应用于DNA序列[20]。在这项研究中,我们利用了预训练的单词向量来嵌入DNA序列。我们通过窗口大小m(m = 3)和步长s(s = 1)进行长度n的DNA样本,然后获得长度m xi∈{x 1,x 2,x 3,...,x n-2}的N-2 DNA序列。每个X I可以在衍生自DNA2VEC的预训练的DNA载体基质中找到[21]。我们使用ei∈Rk来表达缝隙I序列的k(k = 100)维矢量,然后将我们的序列x i转换为e ei∈{e 1,e 2,e 3,...,e n-2}。最后,对于每个长度n的样本,它可以嵌入为:e 1:n -2 = e1⊕e2 e 2 e 2⊕e n -2(1),其中⊕表示串联算子。
摘要:量子 Tanner 码是一类具有良好参数(即恒定编码率和相对距离)的量子低密度奇偶校验码。在本文中,我们证明量子 Tanner 码还可以促进对抗噪声的单次量子纠错 (QEC),其中一个测量轮(由恒定权重奇偶校验组成)足以在存在测量误差的情况下执行可靠的 QEC。我们为 Leverrier 和 Zémor 引入的顺序和并行解码算法建立了这一结果。此外,我们表明,为了抑制 QEC 多轮重复中的错误,在每一轮中运行并行解码算法恒定时间就足够了。结合良好的代码参数,由此产生的 QEC 的恒定时间开销和对(可能与时间相关的)对抗噪声的鲁棒性使量子 Tanner 码从量子容错协议的角度来看具有吸引力。
由Arikan提出的极性码编译码算法复杂度低,对于给定的码长具有优异的性能,自提出以来就受到了广泛的关注和欢迎。穿孔极化码的构造使得编码更加灵活,适用于更加多样化的场景。本文提出了一种改进的极性码穿孔方案,在传统穿孔极化码的限制下,基于信道可靠性估计方法计算各个极化子信道的误码概率,对可靠性较低的极化子信道进行穿孔。此外,为了获得更好的译码性能,该方案将穿孔比特的初始对数似然率(LLR)设置为无穷大(或负无穷大)。仿真结果表明,本文提出的改进穿孔极化码的性能优于传统穿孔极化码。
在传统(经典)纠错中,Levenshtein 于 1966 年引入的删除纠错 [1] 近来引起了广泛关注(例如,参见 [2] 及其参考文献)。在纠正擦除时,接收方知道擦除的位置 [3]–[5]。与此相反,接收方不知道删除的位置,这给纠正删除和构造适合删除纠错的代码增加了额外的难度。部分由于删除纠错和量子纠错的共同困难,量子删除纠错的研究最近才刚刚开始 [6]–[8]。这些研究提供了量子删除纠错码的具体示例。 [6] 提出了第一个系统地构造1-删除校正二元量子码,其中对任意正整数k,构造了((2 k +2 − 4 , k )) 2 码。最近,[9],[10] 提出了第一个系统地构造t-删除校正二元量子码,适用于任意正整数t。现有研究存在以下问题:(1)没有系统地构造纠正1以上删除的非二元量子码。(2)现有的稳定器量子纠错研究不能以明显的方式重复使用,而置换不变码
桑树伍德码头小学生致力于在我们所做的一切中努力努力卓越。我们的愿景是,学生成为富有创造力和雄心勃勃的学习者,他们始终努力尽力而为,因为他们受到学校内杰出的团队的激励和指导。他们将能够为当地社区做出贡献,并了解他们的行动如何影响更广阔的世界。他们将是关怀公民,他们知道如何保持自己的安全,并意识到自己在照顾他人方面有角色。随着我们开发教学和课程,我们的目标是在我们所做的一切中取得杰出的成就。
