Loading...
机构名称:
¥ 3.0

摘要:量子 Tanner 码是一类具有良好参数(即恒定编码率和相对距离)的量子低密度奇偶校验码。在本文中,我们证明量子 Tanner 码还可以促进对抗噪声的单次量子纠错 (QEC),其中一个测量轮(由恒定权重奇偶校验组成)足以在存在测量误差的情况下执行可靠的 QEC。我们为 Leverrier 和 Zémor 引入的顺序和并行解码算法建立了这一结果。此外,我们表明,为了抑制 QEC 多轮重复中的错误,在每一轮中运行并行解码算法恒定时间就足够了。结合良好的代码参数,由此产生的 QEC 的恒定时间开销和对(可能与时间相关的)对抗噪声的鲁棒性使量子 Tanner 码从量子容错协议的角度来看具有吸引力。

良好量子 LDPC 码的单次解码

良好量子 LDPC 码的单次解码PDF文件第1页

良好量子 LDPC 码的单次解码PDF文件第2页

良好量子 LDPC 码的单次解码PDF文件第3页

良好量子 LDPC 码的单次解码PDF文件第4页

良好量子 LDPC 码的单次解码PDF文件第5页

相关文件推荐

2024 年
¥4.0
2024 年
¥28.0
2025 年
¥1.0
2020 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥24.0
2024 年
¥1.0
2007 年
¥1.0
2024 年
¥9.0
2024 年
¥1.0
2025 年
¥1.0
1900 年
¥3.0
2024 年
¥1.0
2024 年
¥1.0
2009 年
¥1.0
2024 年
¥12.0
2022 年
¥5.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0