应用。 [3] 然而,尽管取得了这些进展,这些执行器要实现大输出力和高重量标准化工作能力(以下称为“工作能力”)仍然具有挑战性。 [4] 这是因为组成材料较软且体积有限,难以储存和释放高机械能。 [2d,5] 目前,大多数微型软执行器的工作能力相对较低,在 10 –3 至 10 2 J kg − 1 范围内(图 S1,支持信息),[3b,6] 这使得它们无法用于潜在的医疗器械、操作和其他需要高工作能力的应用。 [7] 此外,现有磁控软执行器的最大输出力约为 60 µN。然而,许多医疗程序,如支架植入术 [8] 要求装置的输出力超过 1 N,这约为磁控软执行器最大输出力的 10软气动执行器同时提供了高机械性能和柔顺性,使其在强力操控中得到了广泛的应用。[9] 具体而言,尽管杨氏模量较小(约为 10 kPa),但这些执行器可以提供高工作能力(9 J g-1),比大多数已报道的执行器的性能高出约 10 1 –10 3 倍。尽管形状记忆合金具有类似的工作能力,但它是执行器的 10 6 倍
我们研究了双层kitaev蜂窝模型的相图,并通过层间相互作用,通过扰动理论得出有效的模型,并执行majoragarana含义层次的理论计算。我们表明,会发生各种磁性和拓扑相变的阵列,具体取决于层间相互作用的方向以及Kitaev相互作用的相对符号。当两个层具有相同的基塔夫相互作用的迹象时,就会发生从基塔耶旋转液体到磁序状态的一阶过渡。沿Ising轴的磁性点,它是(反)铁磁相互作用的(抗)铁磁。但是,当两个层具有相反的基塔夫相互作用的迹象时,我们观察到磁有序趋势的显着削弱,而基塔伊夫自旋液体可以生存,直至更大的层中层交换。我们的平均值分析表明,中间间隙z 2旋转状态的出现,最终在粘膜凝结后变得不稳定。通过高度沮丧的120°指南针模型来描述汇总阶段。我们还使用扰动理论来研究模型,沿着z ˆ轴或位于xy平面的ising轴指向。在这两种情况下,我们的分析都揭示了一维伊斯丁链的形成,这些链在扰动理论中保持脱钩,从而导致了典型的地面变性。我们的结果突出了双层量子自旋液体中拓扑顺序和磁性顺序趋势之间的相互作用。
通用缩放定律控制跨越平衡连续相变时产生的拓扑缺陷的密度。kibble-zurek机制(KZM)预测了缓慢淬火的淬火时间的依赖性。相比之下,对于快速淬火,缺陷密度以淬火的幅度普遍尺度。我们表明,通用缩放定律适用于由振荡外部场驱动的动态相变。系统对周期电势场的能量响应的差异导致能量吸收,对称性的自发断裂及其恢复。我们验证了相关的通用缩放定律,提供了证据表明,可以通过与KZM结合的时间平均临界指数来描述非平衡相变的关键行为。我们的结果表明,临界动力学的普遍性超出了平衡关键性,从而促进了对复杂非平衡系统的理解。
为了确保准确性,在绝对零的温度下进行实验,将背景噪声降低至几乎没有。KERR谐振器是关键的,因为它可以扩增通常无法观察到的量子效应。因为它可以对具有极高敏感性的两光孔信号做出响应,因此研究人员能够使用它以前所未有的精确度探索相过渡 - 传统设置简直无法实现。
随着电动汽车(EV)的流行,对高性能和有效电池系统的需求变得越来越重要。确保锂离子电池的最佳热管理对于保持其安全性,可靠性和寿命至关重要。该项目着重于使用相变材料(PCM)和热管的创新热管理系统(TMS)的开发。该项目旨在设计,制造和测试基于PCM和热管的原型热管理系统。通过实验测试和计算模拟,将在各种操作条件下评估系统的性能。最终,这项研究通过解决热门管理的关键问题来有助于EV电池技术的发展。通过开发结合相变材料和热管的强大热管理系统,该项目提供了一种有希望的解决方案,以增强电动汽车电池的安全性,寿命和能源效率。关键字: - 电池热管理系统,相变材料,加热管,电动电动电气电池技术
随着电动汽车(EV)的流行,对高性能和有效电池系统的需求变得越来越重要。确保锂离子电池的最佳热管理对于保持其安全性,可靠性和寿命至关重要。该项目着重于使用相变材料(PCM)和热管的创新热管理系统(TMS)的开发。该项目旨在设计,制造和测试基于PCM和热管的原型热管理系统。通过实验测试和计算模拟,将在各种操作条件下评估系统的性能。最终,这项研究通过解决热门管理的关键问题来有助于EV电池技术的发展。通过开发结合相变材料和热管的强大热管理系统,该项目提供了一种有希望的解决方案,以增强电动汽车电池的安全性,寿命和能源效率。关键字: - 电池热管理系统,相变材料,加热管,电动电动电气电池技术
随着电动汽车(EV)的流行,对高性能和有效电池系统的需求变得越来越重要。确保锂离子电池的最佳热管理对于保持其安全性,可靠性和寿命至关重要。该项目着重于使用相变材料(PCM)和热管的创新热管理系统(TMS)的开发。该项目旨在设计,制造和测试基于PCM和热管的原型热管理系统。通过实验测试和计算模拟,将在各种操作条件下评估系统的性能。最终,这项研究通过解决热门管理的关键问题来有助于EV电池技术的发展。通过开发结合相变材料和热管的强大热管理系统,该项目提供了一种有希望的解决方案,以增强电动汽车电池的安全性,寿命和能源效率。关键字: - 电池热管理系统,相变材料,加热管,电动电动电气电池技术
随着电动汽车(EV)的流行,对高性能和有效电池系统的需求变得越来越重要。确保锂离子电池的最佳热管理对于保持其安全性,可靠性和寿命至关重要。该项目着重于使用相变材料(PCM)和热管的创新热管理系统(TMS)的开发。该项目旨在设计,制造和测试基于PCM和热管的原型热管理系统。通过实验测试和计算模拟,将在各种操作条件下评估系统的性能。最终,这项研究通过解决热门管理的关键问题来有助于EV电池技术的发展。通过开发结合相变材料和热管的强大热管理系统,该项目提供了一种有希望的解决方案,以增强电动汽车电池的安全性,寿命和能源效率。关键字: - 电池热管理系统,相变材料,加热管,电动电动电气电池技术
随着电动汽车(EV)的流行,对高性能和有效电池系统的需求变得越来越重要。确保锂离子电池的最佳热管理对于保持其安全性,可靠性和寿命至关重要。该项目着重于使用相变材料(PCM)和热管的创新热管理系统(TMS)的开发。该项目旨在设计,制造和测试基于PCM和热管的原型热管理系统。通过实验测试和计算模拟,将在各种操作条件下评估系统的性能。最终,这项研究通过解决热门管理的关键问题来有助于EV电池技术的发展。通过开发结合相变材料和热管的强大热管理系统,该项目提供了一种有希望的解决方案,以增强电动汽车电池的安全性,寿命和能源效率。关键字: - 电池热管理系统,相变材料,加热管,电动电动电气电池技术
简介。最近的Moiré材料激增已大大扩大了具有强相关电子的实验平台的数量。虽然相关的绝缘状态和扭曲双层石墨烯中的超导性[1-4]的超导能力启动,但过渡金属二分法(TMD)材料的双层中电子相关性的强度超过了石墨烯cousins中的材料[5]。在TMD中进行的实验揭示了Mott绝缘子的特征[6-10],量子异常的霍尔效应[11]和 - 在杂词中 - 分数纤维上的莫特 - 木晶体[7,12-16]。当电子电荷定位时,只有自旋程度仍然存在,并且在最近的实验中开始研究TMDMoiréBiLayers中的杂志[17-19]。Heterobilayers在三角形晶格上意识到了一个诱导的Hubbard模型[20-23],因此,局部旋转非常沮丧。这种挫败感可能会导致旋转液相,这是一种异国情调的物质,其物质实现一直在寻求[24,25]。在这封信中,我们表明n =±3 /4的通用Mott-Wigner状态报告了WSE 2 / WS 2双层[12,13]的填充状态,可以实现手性旋转液体[26,27]和Kagome Spin液体(KSL)[28-33]。在这种特殊的填充下,电子位于有效的kagome晶格上,该晶格以其高度的几何挫败感而闻名。TMD双层的可调节性 - 更换扭曲角度,栅极调整,材料在这里,我们证明了现实的模型参数如何导致该kagome晶格的有效自旋模型,并使用广泛的最新密度矩阵构造组(DMRG)模拟研究模型[34,35]。